Structure-Aware Metrics for the Evaluation of Deep Learning-Based Image Reconstruction Algorithms

Elias Eulig^{1,2}, Joscha Maier¹, and Marc Kachelrieß^{1,2}

¹German Cancer Research Center (DKFZ), Germany ²Heidelberg University, Germany

Motivation

In medical imaging (CT, MRI) pathological features are often present as small, potentially low-contrast structures

Motivation

Common IQA metrics weigh pixels of differently sized structures equally

→ These metrics are not sensitive to the removal of small structures Ground truth

Algorithm A (additive Gaussian noise)

Algorithm B (removed small structures)

Aim

Develop a novel metric that explicitly penalizes the removal of small structures

	Algorithm A	Algorithm B
RMSE (\downarrow)	35.028 HU	31.157 HU
SSIM (\uparrow)	0.936	0.996
PSNR (\uparrow)	33.797 dB	34.814 dB

Methods General setup

Denote with $x \in \mathbb{R}^{H \times W}$ an image reconstructed using some algorithm and $y \in \mathbb{R}^{H \times W}$ the corresponding (aligned) ground truth image

- 1. Generate a set S of binary segmentations $s \in \{0, 1\}^{H \times W}$, each representing a structure present in y
- 2. For each of the segments $s \in S$ compute a traditional image metric between x and y
- 3. Aggregate the per-segment metrics to compute a single metric for the entire image x

Methods

1. Segment arbitrary structures using SAM

- 1. Segment patient via thresholding and finding largest contour
- 2. Define a grid of point prompts over the previously found patient segmentation
- 3. Query SAM¹ using these point prompts and filter masks with low S_{stab} and IoU_{pred}

$$S_{\text{stab}}(l, \theta_0, \theta_1) = \frac{|l > \theta_1|}{|l > \theta_0|}, \theta_0 < \theta_1 \quad \text{IoU}(A, B) = \frac{|A \cap B|}{|A \cup B|}$$

l : Logits predicted by network

4. Sort segments by increasing area. Starting with smallest segment, remove intersections with any segment already in S to ensure that each pixel is only assigned to one segment.

Methods General setup

Denote with $x \in \mathbb{R}^{H \times W}$ an image reconstructed using some algorithm and $y \in \mathbb{R}^{H \times W}$ the corresponding (aligned) ground truth image

- 1. Generate a set S of binary segmentations $s \in \{0, 1\}^{H \times W}$, each representing a structure present in y
- 2. For each of the segments $s \in S$ compute a traditional image metric between x and y
- 3. Aggregate the per-segment metrics to compute a single metric for the entire image x

Methods

2. Segment-wise metric computation

- Compute traditional image metric for each $m \in \mathcal{M}$, here root mean squared error (RMSE)
- Segment-wise root mean squared error (SRMSE) between x and y for some segment s:

SRMSE
$$(x, y; s) = \sqrt{\frac{1}{\sum_{(i,j)} s_{ij}} \sum_{(i,j)} s_{ij} (x_{ij} - y_{ij})^2}$$

 Other metrics, including ones based on perceptual similarity or mutual information are possible

Methods General setup

Denote with $x \in \mathbb{R}^{H \times W}$ an image reconstructed using some algorithm and $y \in \mathbb{R}^{H \times W}$ the corresponding (aligned) ground truth image

- 1. Generate a set S of binary segmentations $s \in \{0, 1\}^{H \times W}$, each representing a structure present in y
- 2. For each of the segments $s \in S$ compute a traditional image metric between x and y
- 3. Aggregate the per-segment metrics to compute a single metric for the entire image x

Methods

3. Metric aggregation

After computing SRMSE for each segment, aggregate these values to obtain a single metric for the entire image

Average SRMSE over all segments:

Mean-SRMSE
$$(x, y) = \frac{1}{|\mathcal{S}|} \sum_{s \in \mathcal{S}} \text{SRMSE}(x, y; s)$$

Maximum SRMSE over all segments:

$$\text{Max-SRMSE}(x, y) = \max_{s \in \mathcal{S}} \text{SRMSE}(x, y; s)$$

ExperimentsDataset

- Evaluate sensitivity of our metric to alterations of small structures
- Use abdominal CT dataset with ground truth segmentation of hepatic vessels¹
- For each patient, remove F increasing fractions $Q = \{q_1, \dots, q_F\}$ of hepatic vessels via inpainting
 - → Simulates increasing amount of anatomical changes
- Emulate other deviations by adding Gaussian noise with varying σ
 → Unstructured noise may overshadow the small anatomical differences

Experiments Evaluation details

- Quantify whether a metric detects that in some image more structures were removed than in another image
- Normalized Kendall-Tau rank distance¹:

$$\tau(A, B) = \frac{2\sum_{(i,j):i < j} t_{i,j}(A, B)}{n(n-1)}$$

$$\tau(A,B) = \frac{2\sum_{(i,j):i$$

 A_i, B_i : Ranking of element $i \leq n$

Example:

$$R_{\rm true} = [0, 50, 100] \%$$

 $R_{\rm RMSE} = [20, 18, 24] \; {\rm HU}$
 $\tau(R_{\rm true}, R_{\rm RMSE}) = 1/3$

Results

Example for one patient, boxplots correspond to 10 trials of random noise

- RMSE, PSNR, MAE: Differences caused by the removal of small structures are overshadowed by noise for large σ
- SSIM: Performs worse for small $\sigma = 20$ HU already
- Mean-SRMSE: Outperforms other metrics in this regard
- Max-SRMSE: Sensitive to removal of any structure, not sensitive to amount of removed structures

Results

Evaluation of Mean-SRMSE

- Mean-SRMSE is more sensitive to removal of small structures than comparison metrics
- SSIM performs as bad as random guessing for large σ

Evaluation of Max-SRMSE

- Max-SRMSE is more sensitive to removal of very few structures compared to other metrics
- Again, SSIM performs exceptionally bad

For our data, this alters only $10^{-3} - 10^{-2}\%$ of

voxels of a patient

Conclusions & Outlook

Conclusions

- Increasing amount of random deviations overshadow systematic removal of small structures for common IQA metrics
- SSIM performs exceptionally bad in this regard
- Preliminary experiments suggest that proposed metrics are more sensitive

Limitations & Outlook

- Proposed metric can only detect removal of structures
- Validate our findings using additional experiments with different modalities
- Explore use of other per-segment metrics and other aggregation methods
- Go Fully3D by using a general-purpose 3D segmentation model
- Use the new metric to train networks

APPENDIX

Sparse View Restoration Example

Resolution Improvement Example

2D U-net to converts 5 mm thick images into 1 mm ones.

E.g. to "replace a scanning protocol for a 1 mm slice with

RL deconv.

a 5 mm protocol"

5 mm image

1 mm GT