Scatter Correction for Static CT
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Introduction

Static CT (see Figure 1) I1s composed of a stationary
detector ring as well as a stationary source ring array. It
can be attributed to the family of 4™ generation scanners,

which were originally rotate-stationary systems with a

source moving around the patient.
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Figure 1:

a) Static CT in xz-plane. Static CT can be attributed to
4" generation scanners. Detector ring and source
ring array are shifted in z-direction. RF and RD
denote the radius of the source ring and detector
ring, respectively.

b) Static CT in xy-plane. The outer ring is the source
array, the inner ring the detector. The field of
measurement (FOM) is 50 cm.

The design of static CT yields some advantages. For
example, by having a stationary detector ring, ring
artifacts, which 3" generation scanners are prone to, can
be avoided. Moreover, the absence of rotating
components leads to a mechanical simplification and a
more compact design. Furthermore, the acquisition time Is
not limited by the rotation speed of the gantry, but rather
by the source power and maximum electronic switching
speed between sources. However, the static CT design
comes with new challenges. One of the main issues Is
scattered radiation since the geometry disallows the use
of anti-scatter grids (ASGs). This leads to increased noise
and artifacts in the image.

Methods
Data generation (see Figure 2)
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Figure 2: data generation

Deep Scatter Estimation (DSE)

While kernel-based models underlie physical models with
simplified assumptions, DSE%3 (see Figure 3) has the
advantage that it can learn suitable models without
defining them explicitly. DSE s based on a U-net
architecture and its weights and biases were determined
by minimizing the scatter-to-primary mean absolute
percentage error (SPMAPE), since the scatter-to-primary
ratio correlates with the scatter artifacts Iin the resulting
Image. Two versions of DSE were implemented. A 1-view
DSE with 1 projection as input and a 3-view DSE which
uses 3 projections as Input. DSE can leverage the
additional projections to obtain additional 3D information
about the object which helps the scatter prediction.
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Figure 3: DSE is based on a U-net architecture. The scatter-to-primary mean absolute percentage error (SPMAPE)
serves as loss function.

Results

Uncorrected reconstruction of a test thorax phantom (see
Figure 4) results In strong scatter artifacts that show up as
streaks between regions with high attenuation with a
mean absolute error (MAE) of 23.4 HU. Employing 3-DSE,
the MAE can be reduced to 0.5 HU. No artifacts remain
visible In the reconstruction. On the other hand, the
kernel-based method leads to under- or overestimation
depending on the region.
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Figure 4: Testing of scatter estimation methods with a simulated thorax phantom. The lowest MAE is achieved by 3-
view DSE. Both, 1-view DSE and 3-view DSE outperform the reference method.

Additionally, testing was done on a head phantom (see
Figure 5). Although DSE was not trained on any head
phantoms, it Is able to reduce the MAE from 22 HU to 1.5
HU and outperforms the kernel-based comparison
method.
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Figure 5: Testing of scatter estimation methods with a simulated head phantom. The lowest MAE is achieved by 3-view
DSE. Both, 1-view DSE and 3-view DSE outperform the reference method. The estimation methods were not trained on
any head phantoms.

Conclusion

In our simulation study, DSE allows for accurate scatter
correction In static CT. This Indicates that previous
challenges regarding scatter artifacts in 4t generation CT
may be overcome using deep learning-based approaches.
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