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Motivation
• Several artifacts may impair CT image quality

– Noise

– Motion

– Metal

– Scatter

– ….

• This work focuses on deep learning-based scatter correction

Scatter correction

Analytical 
approaches

Deep learning-
based (e.g. DSE1,2)

Measurement-
based

Projection-
based

(pep model3)

Image-based
(MC, Boltzmann 

transport)

Statistical 
approaches

1J. Maier, M. Kachelrieß et al. “Robustness of DSE“, Med. Phys. 46(1):238-249, January 2019. 
2J. Maier, M. Kachelrieß et al. “Deep Scatter Estimation (DSE)“, SPIE 2018 and J. of Nondest. Eval. 37:57, 
July 2018.
3B. Ohnesorge, K. Klingenbeck-Regn et al. “Efficient object scatter correction algorithm for third and fourth 
generation CT scanners” European Radiology 9, 563–569 (Mar. 1999) 
4E. P. Rührnschopf, K. Klingenbeck „A general framework and review of scatter correction methods in x-ray 
cone-beam computerized tomography. Part 1: Scatter compensation approaches“ Medical Physics 38, 
4296–4311 (June 2011)
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Prior Work

• Deep neural networks are powerful tools to reduce object scatter artifacts.1-5

• The deep scatter estimation (DSE) outperforms other techniques.1-5

• DSE can also be trained with measured data and is real-time capable.1,2,5

• DSE also shows great potential for cross-scatter correction.4,5

Scatter profile from Monte Carlo simulation

Scatter prediction from deep scatter estimation

Time: 65 s per projection = 14 h per circle scan

Time: 6.7 ms per projection = 8 s per circle scan 

| DSE - MC | MAPE = 2.5 %

1J. Maier, M. Kachelrieß et al. “Deep Scatter Estimation (DSE)“, SPIE 2018 and J. of Nondest. Eval. 37:57, July 2018. 
2J. Maier, M. Kachelrieß et al. “Robustness of DSE“, Med. Phys. 46(1):238-249, January 2019. 
3J. Erath, M. Kachelrieß et al. “Monte-Carlo-Free Deep Scatter Estimation (DSE) for X-Ray CT and CBCT”, RSNA 2019. 
4J. Erath, M. Kachelrieß et al., “Deep Scatter Correction in DSCT”, CT Meeting, August 2020. 
5J. Erath, M. Kachelrieß et al., “Deep Learning-Based Forward and Cross-Scatter Correction in DS CT” Med. Phys. 48(9): 4824-4842, September 2021.
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Prior Work

• Deep neural networks are powerful tools to reduce object scatter artifacts.1-5

• The deep scatter estimation (DSE) outperforms other techniques.1-5

• DSE can also be trained with measured data and is real-time capable.1,2,5

• DSE also shows great potential for cross-scatter correction.4,5

Current limitations:

Bowtie scatter estimation has not been incorporated in previous work.

Aim: To obtain information on whether it is possible to estimate object/patient 
and bowtie scatter simultaneously with the DSE, or whether a separate 

estimation is necessary.

1J. Maier, M. Kachelrieß et al. “Deep Scatter Estimation (DSE)“, SPIE 2018 and J. of Nondest. Eval. 37:57, July 2018. 
2J. Maier, M. Kachelrieß et al. “Robustness of DSE“, Med. Phys. 46(1):238-249, January 2019. 
3J. Erath, M. Kachelrieß et al. “Monte-Carlo-Free Deep Scatter Estimation (DSE) for X-Ray CT and CBCT”, RSNA 2019. 
4J. Erath, M. Kachelrieß et al., “Deep Scatter Correction in DSCT”, CT Meeting, August 2020. 
5J. Erath, M. Kachelrieß et al., “Deep Learning-Based Forward and Cross-Scatter Correction in DS CT” Med. Phys. 48(9): 4824-4842, September 2021.
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• Scattered radiation can originate not only from patients or scanned objects but 
also from other elements in the beam path, such as bowtie or shape filters.

• Bowtie filters are used to modulate the X-ray beam intensity depending on the 
beam position. The aim is to optimize the dose distribution and improve image 
quality at the same time. 

• Unlike other prefilters, bowtie filters are inhomogeneous in the φ-direction, which 
leads to a position-dependent attenuation and thus to different scatter to primary 
ratios, which directly correlate with errors in the reconstructed images.

Bowtie Filter
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Bowtie Filter
• Scattered radiation can originate not only from patients or scanned objects but 

also from other elements in the beam path, such as bowtie or shape filters.

• Bowtie filters are used to modulate the X-ray beam intensity depending on the 
beam position. The aim is to optimize the dose distribution and improve image 
quality at the same time. 

• Unlike other prefilters, bowtie filters are inhomogeneous in the φ-direction, which 
leads to a position-dependent attenuation and thus to different scatter to primary 
ratios, which directly correlate with errors in the reconstructed images.
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Scatter Artifacts in Image Domain – 
Measurements

object scatterwithout scatter bowtie scatter object + bowtie combined

FOV 350 mm, Qr40f kernel, FBP reconstruction, C = 20 HU, W = 100 HU

only bowtie scatter 
correction active!

only object scatter 
correction active!

no scatter correction 
active!

slit scan

PEP approach scatter 
correction

object and bowtie 
scatter correction active!
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Scatter Artifacts in Image Domain – Low Energy

object scatter

MAE patient = 5.9 HU MAE patient = 3.0 HU MAE patient = 7.7 HU

without scatter bowtie scatter object + bowtie combined

FOV 370 mm, Br40f kernel, FBP
Images: C = 0 HU, W = 100 HU. Difference images: C = 0 HU, W = 100 HU.
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Scatter Artifacts in Image Domain – Low Energy

object scatterwithout scatter bowtie scatter object + bowtie combined

Reconstruction: FOV 100 mm, Br72f kernel, reconstructed images C = 0 HU, W = 400 HU
difference images C = 0 HU, W = 200 HU
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Object Scatter
for Coarse Anti-Scatter Grid (ASG)
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Object Scatter
Split into C/D Pixel Position within ASG 
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Bowtie Scatter (Attenuated by Object)
for Coarse ASG
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Bowtie Scatter (Attenuated by Object)
Split into C/D Pixel Position within ASG
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Scatter for Coarse ASG
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Scatter to Primary Ratio for Coarse ASG
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Scatter to Primary Ratio for Coarse ASG
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Deep Scatter Estimation (DSE)

• Deep scatter estimation1-5 outperforms other scatter estimation techniques1,2,4,5

and shows great potential for cross-scatter correction4,5 and real-time scatter 
estimation.1,2,5

• Training parameters:

– Input:

– Addition of varying noise in projection domain (corresponds to approx. 10 to 100 HU in image 
domain) during training to further improve robustness

– Loss function: SPMAPE (scatter-to-primary weighted MAPE)

– Output, which one is better?

combined separately              ,

1J. Maier, M. Kachelrieß et al. “Deep Scatter Estimation (DSE)“, SPIE 2018 and J. of Nondest. Eval. 37:57, July 2018. 
2J. Maier, M. Kachelrieß et al. “Robustness of DSE“, Med. Phys. 46(1):238-249, January 2019. 
3J. Erath, M. Kachelrieß et al. “Monte-Carlo-Free Deep Scatter Estimation (DSE) for X-Ray CT and CBCT”, RSNA 2019. 
4J. Erath, M. Kachelrieß et al., “Deep Scatter Correction in DSCT”, CT Meeting, August 2020. 
5J. Erath, M. Kachelrieß et al., “Deep Learning-Based Forward and Cross-Scatter Correction in DS CT” Med. Phys. 48(9): 4824-4842, September 2021.
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Data Set

• Monte Carlo-simulated data corresponding to the photon-counting CT scanner 
NAEOTOM Alpha.Prime (Siemens Healthineers)

• 100 different thorax, head (both FORBILD1,2) and cylindrical/elliptical 30 cm 
water phantoms

– Different phantom sizes (uniformly distributed scaling from 0.7 to 1.3)

– Different phantom positions (uniformly distributed  from -5 cm to 5 cm) 

– One projection simulated every 5°

• This resulted in 72 projections per 360° scan, which corresponds to a total 
number of data pairs (primary and scatter object/bowtie) of 7200.

• Training, validation and test split is 70:20:10.

• Simulation of a coarse ASG with detector dimensions of 1376 × 144 pixels 

• Four different energy thresholds 20 keV, 55 keV, 70 keV and 90 keV (values 
available at the scanner) for 140 kV tube voltage.

• Networks are trained with 20 keV threshold data only.

1M. Kachelrieß “The FORBILD CT–simulation phantoms,” Proc. of the 1999 Int. Meeting on Fully 3D Image Reconstruction, p. 383 (1999).
2www.dkfz.de/ct
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UNet Architecture DSE

3×3 Convolution, Stride 2

3×3 Convolution, Stride 1

       Upsampling

Skip Connection

688×48×32

344×24×64

172×12×128

86×6×256

43×3×512

Detector dimension 1376×144 merging 6 pixel positions

Output: 6 channels

• Number of network parameters: 8,631,724

A1

Each channel corresponds to a 
different pixel position between the 
lamellae of the ASG

Input: 6 channels
(1 energy threshold × 6 pixel positions)
Dimension: 688×48
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RESULTS
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Reconstructions Low Energy - Thorax

MAE patient = 8.0 HU MAE patient = 2.5 HU MAE patient = 0.7 HU

uncorrectedground truth PEP approach
DSE object + bowtie 

separately

DSE object + bowtie 
combined

MAE patient = 0.7 HU

Reconstruction: FOV 370 mm, Br40f kernel, reconstructed images C = 0 HU, W = 150 HU
difference images C = 0 HU, W = 50 HU
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Reconstructions Low Energy - Thorax

MAE patient = xx HU

uncorrectedground truth PEP approach
DSE object + bowtie 

separately

DSE object + bowtie 
combined

Reconstruction: FOV 100 mm, Br72f kernel, reconstructed images C = 0 HU, W = 400 HU
difference images C = 0 HU, W = 200 HU
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Conclusions

• Bowtie scatter 
– appears mostly at the edge of the scanned objects.

– leads to visible artifacts and shading.

• DSE is able to reduce scatter artifacts caused by bowtie and object.

• High-frequency scatter artifacts caused by the coarse ASG are significantly 
reduced.

• Separate estimation of bowtie and object scatter not necessary.
– For the test data set the separately trained DSE reduce the MAE by 7.0 HU (from 8.1 HU to 1.1 HU) 

compared to the uncorrected MC-simulated images. 

– DSE trained on bowtie and object scatter combined performs slightly better with a reduction in the 
MAE of around 7.2 HU (from 8.1 HU uncorrected to 0.9 HU DSE-corrected).

• Next step: apply to real measurements
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Thank You!

This presentation will soon be available at www.dkfz.de/ct.

Job opportunities through marc.kachelriess@dkfz.de or through DKFZ’s international PhD or 
Postdoctoral Fellowship programs. 
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