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Motion in CBCT
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Gated reconstructionCBCT scan Gating signal

– has low temporal resolution,

– fails with irregular breathing,

– poor image quality,

– fails with short acquisition time 

Gating-based strategies:

Drawbacks:
– requires gating signal,  

– assumes periodic motion,
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– has low temporal resolution,

– fails with irregular breathing,

– poor image quality,

– fails with short acquisition time 

Examples for CBCT Motion Compensation

sMoCo

 

3D CBCT 4D gated CBCT acMoCo1 

Drawbacks:
– requires gating signal,  

– assumes periodic motion,

1M. Brehm, P. Paysan, M. Oelhafen, P. Kunz, M. Kachelrieß, “Self-adapting cyclic registration for motion-compensated cone-beam CT 

in image-guided radiation therapy”, Medical Physics 39 (12): 7603–7618 (2012).
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Irregular Motion Patterns

Irregular motion patterns may lead to:

• Poor image quality of gated reconstructions.

• Poor temporal resolution of gated reconstructions.

• Failure of current motion compensation approaches.
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Scans with Short Acquisition Time

Scans with short acquisition may lead to:

• Poor image quality of gated reconstructions.

• Poor temporal resolution of gated reconstructions.

• Failure of current motion compensation approaches.
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Aims

• Aim #1: Gating-free motion compensation that can be applied to 
arbitrary scan protocols and arbitrary motion patterns.

→Deep single-angle motion compensation (deep SAMoCo)1

• Aim #2: Ensure final motion compensation is consistent with the 
acquired raw data.

→ Deep raw data consistent SAMoCo (deep rcSAMoCo)

1J. Maier, S. Sawall, M. Arheit, P. Paysan, M. Kachelrieß, “Deep Learning-Based Cone-Beam CT Motion Compensation 

with Single-View Temporal Resolution”, Med. Phys. 2025
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Single-angle Motion Compensation (SAMoCo)
Basic Principle

Single-angle backprojection

Warp

…

…

SAMoCo:
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SAMoCo of Motion State 1
Basic Principle

Single-angle backprojection

Warp

…

…

SAMoCo:
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SAMoCo of Motion State 2
Basic Principle

Single-angle backprojection

Warp

…

…

SAMoCo:
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Learning to Predict Deformation Vector Fields

DVF deforming
patient from 

time i to time j

y

z

Network input Network (modified U-Net) Training labels

Random patient, random phase (A and B) 
from gated CT reconstruction

Calculate DVF from 
phase A to phase B

(Demons, Deeds, 
VoxelMorph, …) 

Randomly select
- projection i from A
- projection j from B
and backproject.

Phase A Phase B

SAR of projection j

3D reconstruction
x

SAR of projection i
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Learning to Predict Deformation Vector Fields
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DVF deforming
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Training / Testing Details

• Training using gated CT reconstruction (high temporal resolution, no 
motion artifacts)
– Gated CT reconstructions of 84 patients.

– Simulation of CBCT (shifted-detector) single-angle reconstructions with random motion 
state and random projection angle.

– Training of the network for 500 epochs using the MSE between prediction and ground 
truth DVF as loss function.

• Testing:
– Simulated shifted-detector CBCT scans with                                                                                              

periodic and highly non-periodic motion                                                                                         
(rotation time: 60 s, 657 views / 360°).

– Real-measurements of a Varian TrueBeam 
CBCT system.
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Results: Periodic Simulation, Test Patient #1 
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Top: C = -200 HU, W = 1000 HU, bottom: C = 0 HU, W = 600 HU

SAMoCoGround truth (GT) Gated reconstruction
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Results: Periodic Simulation, Test Patient #1 
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Top: C = -200 HU, W = 1000 HU, bottom: C = 0 HU, W = 600 HU

SAMoCoGround truth (GT) Gated reconstruction
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Results: Non-Periodic Simulation, Test Patient #2 
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Top: C = -200 HU, W = 1000 HU, bottom: C = 0 HU, W = 600 HU

SAMoCoGround truth (GT) Gated reconstruction
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Results: Non-Periodic Simulation, Test Patient #2 
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SAMoCoGround truth (GT) Gated reconstruction
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Results: Varian CBCT Measurement
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External gating signal (NOT used!)

C = -200 HU, W = 1400 HU, video speed: 2 × real-time
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Results: Varian CBCT Measurement
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Ensuring Raw Data Consistency: Deep rcSAMoCo

• In general, optimal raw data fidelity can 
be achieved by:

• To constrain the vector field to realistic 
deformations, we rather optimize:

Deep SAMoCo

Motion vector fields

PCA

MoCo: fref

Optimization: fopt

d1
d2

d10…
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Results: Non-Periodic Simulation, Test Patient #2 

Difference to 

ground truth

Ground truth (GT), view 90 3D reconstruction Deep SAMoCo, view 90 Deep rcSAMoCo, view 90

CT reconstructions: C = -200 HU,W = 1000 HU, difference images: C = 0 HU,W = 500 HU, 
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Results: Varian CBCT Measurement

3D Reconstruction

C = -200 HU,

W = 1400 HU

Deep SAMoCo Deep rcSAMoCo

Max. inhale at view 475

C = -200 HU,

W = 1400 HU

C = -200 HU,

W = 1400 HU

Max. exhale at view 157

Deep SAMoCo Deep rcSAMoCo

C = -200 HU,

W = 1400 HU
C = -200 HU,

W = 1400 HU
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Conclusions & Outlook

• Deep SAMoCo is able to resolve respiratory motion with single-view 
temporal resolution.

• High correlation between intrinsic respiration signal and Varian RPM 
marker block.

• Deep SAMoCo can potentially overcome limitations of gating-based 
motion compensation.

• Raw data consistency optimization can be easily implemented within 
the deep SAMoCo framework to further improve accuracy and 
reliability.

• Already, the deep SAMoCo is able to partially resolve cardiac motion. 
Further improvement is expected with cardiac-specific training data. 
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Thank You!

Job opportunities through DKFZ’s international PhD programs or through marc.kachelriess@dkfz.de. 

Parts of the reconstruction software were provided by RayConStruct® GmbH, Nürnberg, Germany.



25

Toy Example

• Use the cylindrical voxel phantom shown on the right and scale it 
periodically to simulate motion-corrupted projection data:

    with fD being the phantom and 

    representing the periodic scaling in the axial plane.

• For our purpose, the motion frequency was chosen to correspond to 
a typical number of respiratory cycles during a 60 s CBCT scan.

• Due to the simplicity of Ti, the SAMoCo can be performed using the 
exact inverse of Ti.
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Results

Ground truth 3D reconstruction SAMoCo with known DVFs
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Results: Simulation Study

Ground Truth (GT) SAMoCo
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Top: C = 0 HU, W = 1500 HU, bottom: C = 0 HU, W = 750 HU
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Improving Image Quality

Network (modified U-Net)

-

• Use WashU dataset and take consecutive phases fi=WashU[c(i)%10]. c(i+1) 
= c(i)+1 if rnd > 0.7, c(i) else.

• Simulation of 20 random motion patterns per patient.

• Motion compensation of scan to random phase j.

• Forward- and backprojection in shifted detector geometry (Varian 
TrueBeam).

• Testing on real CBCT scans.
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