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PROBLEMS WITH AI-BASED RECON
Unmeasured information is often faked
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Sparse View Restoration Example

Yo Seob Han, Jaejun Yoo and Jong Chul Ye. Deep Residual Learning for Compressed Sensing CT 
Reconstruction via Persistent Homology Analysis. ArXiv 2016.
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True and Fake Spectral CT
Existing true spectral CT approaches:

Existing fake spectral CT approaches:

[1] J. Ma, Y. Liao, Y. Wang, S. Li, J. He, D. Zeng, Z. Bian, “Pseudo dual energy CT imaging using deep learning-based framework: basic material estimation“, SPIE Medical Imaging 
2018.

[2] W. Zhao, T. Lv, P. Gao, L. Shen, X. Dai, K. Cheng, M. Jia, Y. Chen, L. Xing, “A deep learning approach for dual-energy CT imaging using a single-energy CT data”, Fully3D 2019.

[3] D. Lee, H. Kim, B. Choi, H. J. Kim, “Development of a deep neural network for generating synthetic dual-energy chest x-ray images with single x-ray exposure”, PMB 64(11), 
2019.

[4] L. Yao, S. Li, D. Li, M. Zhu, Q. Gao, S. Zhang, Z. Bian, J. Huang, D. Zeng, J. Ma, “Leveraging deep generative model for direct energy-resolving CT imaging via existing energy-
integrating CT images”, SPIE Medical Imaging 2020.

[5] D. P. Clark, F. R. Schwartz, D. Marin, J. C. Ramirez-Giraldo, C. T. Badea, “Deep learning based spectral extrapolation for dual-source, dual-energy x-ray CT”, Med. Phys. 47 (9): 
4150–4163, 2020.

[6] C. K. Liu, C. C. Liu, C. H. Yang, H. M. Huang, “Generation of brain dual-energy CT from single-energy CT using deep learning”, Journal of Digital Imaging 34(1):149–161, 2021.

[7] T. Lyu, W. Zhao, Y. Zhu, Z. Wu, Y. Zhang, Y. Chen, L. Luo, S. Li, L. Xing, “Estimating dual-energy CT imaging from single-energy CT data with material decomposition 
convolutional neural network”, Medical Image Analysis 70:1–10, 2021.

[8] F. R. Schwartz, D. P. Clark, Y. Ding, J. C. Ramirez-Giraldo, C. T. Badea, D. Marin, “Evaluating renal lesions using deep-learning based extension of dual-energy FoV in dual-
source CT—A retrospective pilot study”, European Journal of Radiology 139:109734, 2021.

[9] Y. Li, X. Tie, K. Li, J. W. Garrett, G.-H. Chen, “Deep-En-Chroma: mining the spectral fingerprints in single-kV CT acquisitions using energy integration detectors”, SPIE Medical 
Imaging 2022.

…

[18] T. Wang, C. Jiang, W. Ding, Q. Chen, D. Shen, Z. Ding, “Deep-learning generated synthetic material decomposition images based on single-energy CT to differentiate 
intracranial hemorrhage and contrast staining within 24 hours after endovascular thrombectomy”, CNS Neurosci. Ther. 31(1), 2025.

J. Maier, J. Erath, S. Sawall, E. Fournié, K. Stierstorfer, and M. Kachelrieß. Raw data consistent deep learning-
based field of view extension for dual-source dual-energy CT. Med. Phys. 51(3):1822-1831, March 2024. 
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Fake Contrast Enhancement
[1] G. Santini, L. M. Zumbo, N. Martini, G. Valvano, A. Leo, A. Ripoli, F. Avogliero, D. Chiappino, D. D. Latta, 

“Synthetic contrast enhancement in cardiac CT with deep learning,” arXiv 1807:01779, 2018.

[2] J. Liu, Y. Tian, A. M. Ağıldere, K. M. Haberal, M. Coşkun, C. Duzgol, and O. Akin, “DyeFreeNet: Deep virtual 
contrast CT synthesis,” Lecture Notes in Computer Science. Springer International Publishing, pp. 80–89, 
2020.

[3] A. Chandrashekar, A. Handa, N. Shivakumar, P. Lapolla, V. Grau, R. Lee, “A deep learning approach to 
generate contrast-enhanced computerised tomography Angiography without the use of intravenous 
contrast agents,” arXiv 2003.01223, 2020.

[4] J. W. Choi, Y. J. Cho, J. Y. Ha, S. B. Lee, S. Lee, Y. H. Choi, J.-E. Cheon, and W. S. Kim, “Generating 
synthetic contrast enhancement from non-contrast chest computed tomography using a generative 
adversarial network,” Scientific Reports, vol. 11, no. 1, 2021.

[5] S. W. Kim, J. H. Kim, S. Kwak, M. Seo, C. Ryoo, C.-I. Shin, S. Jang, J. Cho, Y.-H. Kim, and K. Jeon, “The 
feasibility of deep learning-based synthetic contrast-enhanced CT from non-enhanced CT in emergency 
department patients with acute abdominal pain,” Scientific Reports, vol. 11, 2021.

[6] J. Chun, J. S. Chang, C. Oh, I. Park, M. S. Choi, C.-S. Hong, H. Kim, G. Yang, J. Y. Moon, S. Y. Chung, Y. J. 
Suh, and J. S. Kim, “Synthetic contrast-enhanced computed tomography generation using a deep 
convolutional neural network for cardiac substructure delineation in breast cancer radiation therapy: a 
feasibility study,” Radiation Oncology, vol. 17, no. 1, 2022.

[7] Y. Gao, H. Xie, C. Chang, J. Peng, S. Pan, R. L. J. Qiu, T. Wang, B. Ghavidel, J. Roper, J. Zhou, and X. Yang, 
“CT‐based synthetic iodine map generation using conditional denoising diffusion probabilistic model,” 
Medical Physics, vol. 51, no. 9, pp. 6246–6258, 2024.

[8] S. Han, J.-M. Kim, J. Park, S. W. Kim, S. Park, J. Cho, S.-J. Park, H.-J. Chung, S.-M. Ham, S. J. Park, and J. H. 
Kim, “Clinical feasibility of deep learning based synthetic contrast-enhanced abdominal CT in patients 
undergoing non-enhanced CT scans,” Scientific Reports, vol. 14, no. 1, 2024.

From [4]
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Deep Cosmetic Motion Artifact Reduction

• Image-based correction 
= cosmetic correction
= similar to pic beauty and others

• May not be the most confident way to go

Zhang et al. Motion artifact removal in coronary CT angiography based
on generative adversarial networks. EuRad 33:43-53, 2023.
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IS NEWER ALWAYS BETTER?
Denoising benchmark with surprising results
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LDCT Benchmark

• Algorithms used for our benchmark:
– CNN-10 (2017)

– RED-CNN (2017)

– ResNet (2018)

– WGAN-VGG (2017)

– QAE (2019)

– DU-GAN (2021)

– TransCT (2021)

– Bilateral (2022)

• All tested methods 
– do the same hyperparameter optimization

– use the same train/validation set

– were evaluated on the same test set
github.com/eeulig/ldct-benchmark

E. Eulig, B. Ommer, and M. Kachelrieß. Benchmarking deep learning-based low-dose CT 
image denoising algorithms. Med. Phys. 51(12):8776-8788, December 2024. 

Standard CNNs trained with 
pixelwise losses

CNNs trained with adversarial 
losses

Specialized architectures trained 
with pixelwise losses
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Slice where the average 
SSIM across all head 
slices and methods is 

highest.

Slice where the average 
SSIM across all head 
slices and methods is 

lowest.

E. Eulig, B. Ommer, and M. Kachelrieß. Benchmarking deep learning-based low-dose CT 
image denoising algorithms. Med. Phys. 51(12):8776-8788, December 2024. 
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E. Eulig, B. Ommer, and M. Kachelrieß. Benchmarking deep learning-based low-dose CT 
image denoising algorithms. Med. Phys. 51(12):8776-8788, December 2024. 
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Visual information fidelity (VIF)
Compare information I extracted by a human 
visual system (HVS) model of the test image 
y with that of the reference image x.

Gk are Gaussians of different scale

Image Quality Metrics
Given reference image x and test image y, N pixels each.

Peak signal-to-noise ratio (PSNR) Structural similarity index measure (SSIM)

Radiomic feature similarity (RFS)
1. Extract radiomic features Rx and Ry from 

segmentations in x and y
2. Compute cosine similarity between Rx and Ry

in a sliding 
7×7 window
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PSNR units are decibel (dB)

Green numbers indicate that a method is significantly better than the previously published best method. 
Red numbers indicate that it is significantly worse.

E. Eulig, B. Ommer, and M. Kachelrieß. Benchmarking deep learning-based low-dose CT 
image denoising algorithms. Med. Phys. 51(12):8776-8788, December 2024. 

Quantitative Results
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A NEW METRIC FOR SUBTLE DETAILS
Let small structures be just as important as large structures
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Attention: Each Pixel May be Significant!
• MAE, PSNR, RMSE and SSIM* are often used to quantify image quality, 

e.g. in loss functions or to rank algorithms.

• Alteration of a few pixels may mislead diagnosis.

*SSIM also accounts in parts for the human visual system by using luminance, contrast and structure to estimate perceptual quality.
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Detecting Small Structures Using SAM1,2

Mask generated for single point prompt

Step 1: Segment patient via simple thresholding and finding 
largest contour 

Step 2: Define a point grid over the previously found patient 
segmentation

Step 3: Generate masks using SAM and previously defined 
point prompts

a) Sort masks by their area

b) Starting with smallest mask:

• Remove masks with low stability score or low predicted IoU

• Remove intersections with any previous masks

• Only add mask if it is fully within the patient

Logits predicted by network

1Kirillov, Alexander, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete Xiao, et al. “Segment Anything.” arXiv, 2023.
2Ma, Jun, Yuting He, Feifei Li, Lin Han, Chenyu You, and Bo Wang. “Segment Anything in Medical Images.” Nature Communications 15 (1): 654, 2024.
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Methods
Segment RMSE (SRMSE)

Given a set of SAM-segmented masks ℳ = {𝒎 𝟏 ,𝒎 𝟐 , … ,𝒎 𝑴 }, where each 
mask m(𝒊) ∈ {𝟎, 𝟏}𝑵 with 𝑵 = 𝑯 ×𝑾, define with SRMSE the mask-wise root 
mean square error (RMSE) for two images 𝒙, 𝒚 and mask 𝒎

Using the set of all SRMSEs SRMSE 𝑥, 𝑦;𝑚 𝑖
𝑖=1

𝑀
, define the
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Detecting Hallucinations

• Compare SRMSE of low dose scan (𝒙) with network prediction (ෝ𝒚).

• On a chest scan with 392 axial slices we have a total of 15,547 masks.

Network performs 
worse than low dose 

scan for 3.4% of masks
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High Dose Images

X

X

X



47

Network Predictions (WGAN-VGG)

X

X

X
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Low Dose Images

X

X

X
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Experiments
Evaluation

• Evaluate the proposed metric on synthetic datasets where the 
amount of removed structures is known

• Utilize three datasets from the Medical Decathlon1,  a collection of 
ten medical image segmentation tasks with ground truth annotations

1Simpson, Amber L., Michela Antonelli, Spyridon Bakas, Michel Bilello, Keyvan Farahani, Bram van Ginneken, Annette Kopp-Schneider, et al. 2019. “A Large Annotated Medical 
Image Dataset for the Development and Evaluation of Segmentation Algorithms.” arXiv.

Hepatic Vessels Brain tumors

CT MRI – T1Gd CT

Lung cancer



50

Evaluation

• For each scan in a dataset we can randomly remove fractions q of 
the ground truth (manually segmented) structures by means of 
inpainting.

• Fraction q refers to the whole patient and not just to a single slice!

• Here we simply replace pixels with
– Hepatic vessel: 130 HU

– Lung: -800 HU

– Brain tumor: median pixel value

• Add Gaussian noise with various standard deviations

• Then evaluate how well different metrics
a) can rank images with different 𝑞

b) can detect that an algorithm removed very few, e.g. q << 1%, structures



Hepatic Vessels



Lung cancer



Brain tumor
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Results: True Positive Fraction

Hepatic Vessels Lung Cancer Brain Tumor

The plots are for q = 0.1, i.e. for about 0.007% to 0.03% modified voxels. 
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Summary

• New metrics are needed to quantify changes in subtle details.

• Needed to evaluate the quality of AI-based algorithms.

• Could become part of the loss function to train networks.

• May help to determine the amount of dose reduction possible for a 
given algorithm.
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Thank You!

• This presentation will soon be available at 
www.dkfz.de/ct.

• Job opportunities through 
marc.kachelriess@dkfz.de or through
DKFZ’s PhD program. 

• Parts of the reconstruction software were 
provided by RayConStruct® GmbH,
Nürnberg, Germany.

E. Eulig, B. Ommer, and M. Kachelrieß. Benchmarking deep 
learning-based low-dose CT image denoising algorithms.

Med. Phys. 51(12):8776-8788, December 2024. 

github.com/eeulig/ldct-benchmark

Low dose CT benchmark:


	Folie 1: Problems of Assessing AI-Based CT Image Reconstruction, Denoising or Artifact Reduction
	Folie 3: Problems With AI-Based Recon
	Folie 4: Sparse View Restoration Example
	Folie 5
	Folie 6: True and Fake Spectral CT
	Folie 11: Fake Contrast Enhancement
	Folie 12: Deep Cosmetic Motion Artifact Reduction
	Folie 14: Is Newer Always Better?
	Folie 17: LDCT Benchmark
	Folie 21
	Folie 22
	Folie 23: Image Quality Metrics
	Folie 24: Quantitative Results
	Folie 29: A new Metric for Subtle Details
	Folie 30: Attention: Each Pixel May be Significant!
	Folie 33: Detecting Small Structures Using SAM1,2
	Folie 34: Detecting Small Structures Using SAM1,2
	Folie 35: Detecting Small Structures Using SAM1,2
	Folie 36: Detecting Small Structures Using SAM1,2
	Folie 37: Detecting Small Structures Using SAM1,2
	Folie 38
	Folie 39
	Folie 41: Methods Segment RMSE (SRMSE)
	Folie 42: Detecting Hallucinations
	Folie 46: High Dose Images
	Folie 47: Network Predictions (WGAN-VGG)
	Folie 48: Low Dose Images
	Folie 49: Experiments Evaluation
	Folie 50: Evaluation
	Folie 51
	Folie 52
	Folie 53
	Folie 54: Results: True Positive Fraction
	Folie 60: Summary
	Folie 61: Thank You!

