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Abstract

Background: Long-lasting efforts have been made to reduce radiation dose
and thus the potential radiation risk to the patient for computed tomography (CT)
acquisitions without severe deterioration of image quality. To this end, various
technigues have been employed over the years including iterative reconstruction
methods and noise reduction algorithms.

Purpose: Recently, deep learning-based methods for noise reduction became
increasingly popular and a multitude of papers claim ever improving perfor-
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LDCT Benchmark

» Algorithms used for our benchmark:

— CNN-10 (2017) _ _

- RED-CNN (2017)> pixehwise losses

— ResNet (2018)

— WGAN-VGG (2017)

— QAE (2019) CNNs trained with adversarial

— DU-GAN (2021) ISo::;salized architectures trained
— TransCT (2021) with pixelwise losses

— Bilateral (2022)
 All tested methods

— do the same hyperparameter optimization
— use the same train/validation set
— were evaluated on the same test set

E. Eulig, B. Ommer, and M. KachelrieB. Benchmarking deep learning-based low-dose CT

image denoising algorithms. Med. Phys. 51(12):8776-8788, December 2024.
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Quantitative Results

Head (25% dose) Chest (10% dose) Abdomen (25% dose)
SSIM  PSNR  VIF RFES SSIM  PSNR  VIF RFS SSIM  PSNR  VIF RFS
Low dose scan 2640 055 0.71 0.34 1877 0.09 0.70 0.84 28.67 034 0.75 0.88

PSNR units are decibel (dB)

CNN-10 (2017) 2886 0.62 094 0.59 2771 0.19  0.80 0.90 3239 045 088 0.90
RED-CNN (2017) 30.41 0.69 095 0.6] 2836 022 0.76  0.90 3322 049 080 0.90
WGAN-VGG (2017) 2536 053 086  0.51 2554 0.15 098 0.88 30.51 038 092 0.88
ResNet (2018) 29.64 0.67 091 0.6l 2842 022 075 090 33.15 049 079 090

QAE (2019) 28.51 059 095 0.58 27.62 0.19 083 0.89 3202 042 096 0.90
DU-GAN (2021) 28.76  0.62 094 0.57 2668 0.17 096 0.89 32.13 043 097 090
TransCT (2021) 24.65 044 088 0.56 2699 0.17 083 0.88 30.53 037 092  0.85
Bilateral (2022) 26.60 0.50 0.87 0.55 2559 0.16 0.64 0.86 27.13 036 087 0.87

Green numbers indicate that a method is significantly better than the previously published best method.
Orange numbers indicate that it is significantly worse.

If you are interested to benchmark your noise reduction algorithm:
https://github.com/eeulig/ldct-benchmark

E. Eulig, B. Ommer, and M. KachelrieB. Benchmarking deep learning-based low-dose CT

image denoising algorithms. Med. Phys. 51(12):8776-8788, December 2024.
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Noise-Augmented Deep Denoising of CT (NADD)

Gernot Kristof, Achim Byl, Elias Eulig, and Marc Kachelriel3

Abstract—Denoising low dose CT images can have great
advantages for the aim of minimizing patient risk, as it can
help lower the effective dose to the patient, while providing
constant image quality. Conventional deep denoising algorithms
cannot handle the correlation between neighboring pixels or
voxels, because the noise structure in CT is a resultant of the
global attenuation properties of the patient and because the
receptive field of denoising approaches is rather small. In this
work additional noise realizations were generated, reconstructed,
and used as additional input into a denoising network to guide
the denoising process. The network was compared to a similar
network, without additional noise augmentation. It was shown,
that the noise-augmented deep denoising network outperformed
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to 2D images but will be extended to 3D volumes in the near
future.

II. METHOD

The idea of this project is to generate, by noise injection
into the rawdata followed by image reconstruction, a multitude
of new noise realizations h.(r) of the CT image g(r) that is
to be denoised. Here we use (' = 10 noise realizations. These
are input to the NADD network, together with the original
CT image that is to be denoised. With these ten additional
] NADD can ] orrelation

G. Kiristof, E. Eulig, and M. KachelrieB. Noise-Augmented Deep Denoising:
A Method to Boost CT Image Denoising Networks. Submitted to Med. Phys., 2025
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Low Dose and Noise Only Images

C=0HU, W=600 HU

G. Kiristof, E. Eulig, and M. KachelrieR. Noise-Augmented Deep Denoising:
A Method to Boost CT Image Denoising Networks. Submitted to Med. Phys., 2025




Low Dose and Noise Only Images

C=0HU, W=600 HU

G. Kiristof, E. Eulig, and M. KachelrieR. Noise-Augmented Deep Denoising:
A Method to Boost CT Image Denoising Networks. Submitted to Med. Phys., 2025




Low Dose and Noise Only Images

e

C=0HU, w=600HU C=0HU, W=150 HU
G. Kiristof, E. Eulig, and M. KachelrieR. Noise-Augmented Deep Denoising:

ARy

A Method to Boost CT Image Denoising Networks. Submitted to Med. Phys., 2025



NADD: Background, Aim and Idea

 Background: CT noise is strongly correlated between pixels. The
correlation depends on the patient’s attenuation properties and on
the tube current curve that was used to generate the images.

 Aim: To find out whether noise reduction networks in CT benefit
from seeing more than one noise realization.

- ldea: Generate, by rawdata noise injection and reconstruction,
several noise realizations and provide them to existing denoising
networks in addition to the noisy image.

NADD =1 measurement + 10 simulated noise realizations

G. Kiristof, E. Eulig, and M. KachelrieB. Noise-Augmented Deep Denoising:

A Method to Boost CT Image Denoising Networks. Submitted to Med. Phys., 2025



Low Dose, Std Dose
and all 10 Noise Only Realizations

Network input

Low Dose +10 simulated noise realizat
- 2™ - _.W—P‘ -

CT Images: C =0 HU, W= 600 HU. Noise only images: C =0 HU, W= 550 HU.
G. Kiristof, E. Eulig, and M. KachelrieR. Noise-Augmented Deep Denoising:

A Method to Boost CT Image Denoising Networks. Submitted to Med. Phys., 2025



Results
Std Dose Low Dose WGAN

C=0HU, W=500 HU
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C=0HU, W=500 HU




Low Dose CNN10 ResNet WGAN

C =0 HU, W= 500 HU dk‘fZ.



Low Dose CNN10 ResNet

Std Dose

-

C =0 HU, W= 500 HU dkfz.



Low Dose CNN10 ResNet WGAN




ResNet WGAN
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Low Dose CNN10 ResNet WGAN
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Abstract

Background: Cone-beam CT (CBCT) scans that are affected by motion often
require motion compensation to reduce artifacts or to reconstruct 4D (3D+time)
representations of the patient. To do so, most existing strategies rely on some
sort of gating strategy that sorts the acquired projections into motion bins.
Subsequently, these bins can be reconstructed individually before further post-
processing may be applied to improve image quality. While this concept is useful
for periodic motion patterns, it fails in case of non-periodic motion as observed,
for example, in irregularly breathing patients.

Purpose: To address this issue and to increase temporal resolution, we propose
the deep single angle-based motion compensation (SAMoCo).

Methods: To avoid gating, and therefore its downsides, the deep SAMoCo trains

J. Maier, S. Sawall, M. Arheit, P. Paysan and M. KachelrieR. Deep learning-based cone-beam CT motion compensation

with single-view temporal resolution. Med. Phys. 52(7):e17911, July 2025.
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Yet Unsolved Problems

Gating and gating-based motion compensation (MoCo)
* require gating signal,

« assume periodic motion,

* have low temporal resolution,

« fail on irregular breathing:

i

Patient with irregular breathing pattern: Gating = bad Gating + MoCo = still bad




Single Angle Reconstructions (SARSs)

WashU SARs Modified SARs

w

JAVAEL

84 4D CT scans (no artifacts, high temporal resolution)

* 10 respiratory phases each (WashU/Colorado dataset)

1010 combinations of phase A and B possible (including A=B)

+ 84-10-10 displacement vector fields (DVFs) known

« 720 CBCT projections? simulated for each CT scan (each phase)
* 84-10-720-10-720 projection pairs with known DVF

"The actual projection numbers are between 420 and 900 and depend on the scan mode.

J. Maier, S. Sawall, M. Arheit, P. Paysan and M. KachelrieR. Deep learning-based cone-beam CT motion compensation

with single-view temporal resolution. Med. Phys. 52(7):e17911, July 2025.



Training Workflow of Deep SAMoCo
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- / \ p y

Randomly select -y = Yo

- projection i from A Phase A Phase B Calculate DVF from
T phase A to phase B

- projection .I_from B Random patient, random A and B (Demons, Deeds,

and backproject. For training we used 4D CT data from 84 patients, 10 phases each. VoxelMorph, ...)
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J. Maier, S. Sawall, M. Arheit, P. Paysan and M. KachelrieR. Deep learning-based cone-beam CT motion compensation dkfz
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Inference Workflow of Deep SAMoCo

For a new patient
— decide for the desired time point j, e.g. the one from 1 millisecond ago
— for all i # j get the DVFs pointing from i to j from the neural network
— deform SARs for all i # j into time point j
— add all the volumes

Foralli#jdo

w

" \\\
il

SAR
of projection i

4 / a7
I 'llll ""
] m e L5
SAR Network (modified U-Net) time J) to fJHJU

of projection j
Network input For the videos shown in the following, we did this for all 720 time points j Network output

varian J. Maier, S. Sawall, M. Arheit, P. Paysan and M. KachelrieR. Deep learning-based cone-beam CT motion compensation

with single-view temporal resolution. Med. Phys. 52(7):e17911, July 2025.
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VUMC_4DThorax

Red: RPM signal (external signal — not used for recon)
Yellow: Diaphragm motion (intrinsic signal — from PAMoCo recon)

J. Maier, S. S Il, M. Arheit, P. P d M. KachelrieB. D | ing-based -b CT moti ti
varian aier. awa rhei aysan an achelrieB. Deep learning-based cone-beam motion compensation dkfz.

with single-view temporal resolution. Med. Phys. 52(7):e17911, July 2025.
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Red: RPM signal (external signal — not used for recon)
Yellow: Diaphragm motion (intrinsic signal — from PAMoCo recon)

varian J. Maier, S. Sawall, M. Arheit, P. Paysan and M. KachelrieB. Deep learning-based cone-beam CT motion compensation

with single-view temporal resolution. Med. Phys. 52(7):e17911, July 2025.



MSK 1

Red: RPM signal (external signal — not used for recon)
Yellow: Diaphragm motion (intrinsic signal — from PAMoCo recon)

varian J. Maier, S. Sawall, M. Arheit, P. Paysan and M. KachelrieB. Deep learning-based cone-beam CT motion compensation

with single-view temporal resolution. Med. Phys. 52(7):e17911, July 2025.
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L. Klein, C. Liu, J. Steidel, L. Enzmann, M. Knaup, S. Sawall, A. Maier, M. Lell, J. Maier, and M. KachelrieB. Patient-specific radiation risk-based tube current modulation for
diagnostic CT. Med. Phys. 49(7):4391-4403, July 2022. This paper received the Sylvia&Moses Greenfield Award for the best scientific paper on imaging in Medical Physics in 2022. z.



Patient Risk-Minimizing Tube Current Modulation
(riskTCM)

1. Coarse reconstruction from two scout views
— E.g. X. Ying, et al. X2CT-GAN: Reconstructing CT from biplanar x-rays with generative
adversarial networks.
CVPR 2019.
2. Segmentation of radiation-sensitive organs
— E.g. S. Chen, M. Kachelriel3 et al., Automatic multi-organ segmentation in dual-energy CT
(DECT) with dedicated 3D fully convolutional DECT networks. Med. Phys. 2019.
3. Calculation of the effective dose per view using the deep dose
estimation (DDE)

— J. Maier, E. Eulig, S. Dorn, S. Sawall and M. Kachelrie3. Real-time patient-specific CT dose
estimation using a deep convolutional neural network. IEEE Medical Imaging Conference
Record, M-03-178: 3 pages, Nov. 2018.

4. Determination of the tube current modulation curve that
minimizes the radiation risk

— L. Klein, C. Liu, J. Steidel, L. Enzmann, M. Knaup, S. Sawall, A. Maier, M. Lell, J. Maier, and
M. Kachelriel3. Patient-specific radiation risk-based tube current modulation for diagnostic CT.
Med. Phys. 49(7):4391-4403, July 2022.

View angle

L. Klein, C. Liu, J. Steidel, L. Enzmann, M. Knaup, S. Sawall, A. Maier, M. Lell, J. Maier, and M. KachelrieB. Patient-specific radiation risk-based tube current modulation for dkfz
Q

diagnostic CT. Med. Phys. 49(7):4391-4403, July 2022. This paper received the Sylvia&Moses Greenfield Award for the best scientific paper on imaging in Medical Physics in 2022.
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diagnostic CT. Med. Phys. 49(7):4391-4403, July 2022. This paper received the Sylvia&Moses Greenfield Award for the best scientific paper on imaging in Medical Physics in 2022.



Conclusions on riskTCM

* Risk-specific TCM minimizes the patient risk.

* With D as a risk model riskTCM can reduce ri='-"' to 30%,
compared with the gold stand~-- rs to take action!

« Otherriskr { is UP to the ven O . ..wiynit- and sex-specific
models, car L . w1 TISKTCM as well.

* Note:
— mAsTCM = good for the x-ray tube
— riskTCM = good for the patient
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Abstract

Background: The reconstruction of a computed tomography (CT) image can
be compromised by artifacts, which, in many cases, reduce the diagnostic value
of the image. These artifacts often result from missing or corrupt regions in the
projection data, for example, by truncation, metal, or limited angle acquisitions.

Purpose: In this work, we introduce a novel deep learning-based framework,
latent space reconstruction (LSR), which enables correction of various types of
artifacts arising from missing or corrupted data.

Methods: First, we train a generative neural network on uncorrupted CT images.
After training, we iteratively search for the point in the latent space of this net-
work that best matches the compromised projection data we measured. Once
an optimal point is found, forward-projection of the generated CT image can be
used to inpaint the corrupted or incomplete regions of the measured raw data.

A. Kabelac, E. Eulig, J. Maier, M. Hammermann, M. Knaup and M. KachelrieB. Latent space reconstruction
for missing data problems in CT. Med. Phys. 52(7):e17910, July 2025.

dkfz.



Original

Truncated

Y N

ADT-corrected (clipped)

I, FOM

Truncated

/ region

'3
P R e
L : C =0 HU, W=1000 HU

K. Sourbelle, M. KachelrieB, and W.A. Kalender. Reconstruction from truncated projections in CT using adaptive detruncation (ADT). Eur Rad 15:1008-1014, 2005.



What is a Variational Autoencoder?

Make latent space regular.

Allow to sample in latent space from a given distribution, here:
normal distribution.

(n,0) 2z ~N(p,o)
)

The VAE iIs a generative model.

It allows to generate new data by sampling new values from the
normal distribution.

A. Kabelac, E. Eulig, J. Maier, M. Hammermann, M. Knaup and M. KachelrieB. Latent space reconstruction

for missing data problems in CT. Med. Phys. 52(7):e17910, July 2025.



Latent Space Reconstruction (LSR)
for Detruncation

Train VAE on very many untruncated CT images f,
0 = arg meinZHD(N(E(fn(r)))) — fu(r)]

Find latent space point z to best match the truncated rawdata p

z = arg min||XD(z) — p|

Forward project D(z) and use the resulting rawdata to extrapolate the
measured rawdata.

Do a final image reconstruction of the detruncated sinogram.

A. Kabelac, E. Eulig, J. Maier, M. Hammermann, M. Knaup and M. KachelrieB. Latent space reconstruction

for missing data problems in CT. Med. Phys. 52(7):e17910, July 2025.



Search in Latent Space

Masked (15 cm)

« Optimization of latent space Target Image Target Sinogram  asked (15 cm)
vector in projection domain

» = argmin| XD(2) — ply o A K

B (. & .
» Video showing intermediate . .
images of selected iteration ' ‘
steps. .
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A. Kabelac, E. Eulig, J. Maier, M. Hammermann, M. Knaup and M. KachelrieB. Latent space reconstruction

for missing data problems in CT. Med. Phys. 52(7):e17910, July 2025.



Results

Ground Truth ADT (classical) U-Net (Ketola et al.) LSR (ours)

MAEs: 127 HU, 272 HU MAEs: 31 HU, 121 HU MAEs: 10 HU, 69 HU

~ 2 "

I - _ //// : ... »-ryr .
N \@ 0 Hw _ MAEs: 24 HU, 260 HU MAEs: 60 HU, 218 HU MAEs: 6 HU, 95 HU

C =50 HU, W = 1200 HU difz.



Summary on Deep Detruncation

* No need for machine learning to restore the gray values within the
FOM.

 Image domain cosmetic detruncation can serve as an intermediate
step to detruncate CT data.

- Latent space reconstruction (LSR) is an interesting way that
simultaneously guarantees rawdata fidelity and nice CT images.

A. Kabelac, E. Eulig, J. Maier, M. Hammermann, M. Knaup and M. KachelrieB. Latent space reconstruction

for missing data problems in CT. Med. Phys. 52(7):e17910, July 2025.
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