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Metal artifacts are

beam
hardening

+ increased susceptibility to sampling artifacts and motion.



Metal Artifact Reduction (MAR)

« With linear interpolation (MAR1) /
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tomography”, IEEE Medical Imaging Conference Record, ol

M09-206, October 2009.



GE‘s Solution Combines DECT Acquisition
with Data Inpainting ...

Gastreointestinal Imaging * Original Research

Metal Artifact Reduction Software
Used With Abdominopelvic
Dual-Energy CT of Patients

With Metal Hip Prostheses:
Assessment of Image Quality and
Clinical Feasibility

Seung Chol Han' OBJECTIVE. The objective of our study was to determine the feasibility of using Met-
Yo ng Eun ChungI al Artifact Reduction (MAR) software for abdominopelvic dual-energy CT in patients with
Young Han Lee! metal hip prostheses.
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Han et al. Metal artifact reduction software used with abdominopelvic dual-energy CT of patients with metal hip
prostheses: Assessment of Image Quality and Clinical Feasibility. AJR 203:788-795, October 2014




... but the Results are not Convincing!

FBP
+

GE‘s MAR

FBP

Han et al. Metal artifact reduction software used with abdominopelvic dual-energy CT of patients with metal hip

prostheses: Assessment of Image Quality and Clinical Feasibility. AJR 203:788-795, October 2014
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Results and Comparison:
Patient Data

Uncorrected

Patient with hip implants, Sensation 16, 140 kV, (C=0/W=500)

SI E M E N s E. Meyer, R. Raupach, M. Lell, B. Schmidt, and M. KachelrieB, “Normalized metal artifact reduction (NMAR) in computed

tomography”, Med. Phys. 37(10):5482-5493, 2012.



Results and Comparison:
Patient Data

Uncorrected MAR1
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Patient with hip implants, Sensation 16, 140 kV, (C=500/W=1500)

SI E M E NS E. Meyer, R. Raupach, M. Lell, B. Schmidt, and M. KachelrieB, “Normalized metal artifact reduction (NMAR) in computed

tomography”, Med. Phys. 37(10):5482-5493, 2012.



Results and Comparison:
Patient Data

Uncorrected MAR2

Patient dental fillings, slice 110, Somatom Definition Flash, pitch 0.9. Top
and middle row: (C=100/W=750). Bottom row: (C=1000/W=4000)

SI E M E NS E. Meyer, R. Raupach, M. Lell, B. Schmidt, and M. KachelrieB, “Normalized metal artifact reduction (NMAR) in computed

tomography”, Med. Phys. 37(10):5482-5493, 2012.



NMAR: Results

Uncorrected

Bone removal (with scanner software), (C=40/W=500).

SI E M E NS E. Meyer, R. Raupach, M. Lell, B. Schmidt, and M. KachelrieB, “Normalized metal artifact reduction (NMAR) in computed

tomography”, Med. Phys. 37(10):5482-5493, 2012.



NMAR: Results

Uncorrected

Patient with hip implant, Somatom Definition Flash, pitch 2.7.
Top and middle row: (C=0/W=500). Bottom row: (C=500/W=1500).

SI E M E Ns E. Meyer, R. Raupach, M. Lell, B. Schmidt, and M. KachelrieB, “Normalized metal artifact reduction (NMAR) in computed

tomography”, Med. Phys. 37(10):5482-5493, 2012.



FSMAR: Scheme
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SI E M E NS E. Meyer, R. Raupach, M. Lell, B. Schmidt, and M. KachelrieB, “Normalized metal artifact reduction (NMAR) in computed

tomography”, Med. Phys. 37(10):5482-5493, 2012.



FSMAR: Results

Uncorrected MAR1

Sd INOYUA

Sd UM

Patient with spine fixation, Somatom Definition, (C=100/\WW=1000).

SI E M E N S E. Meyer, R. Raupach, M. Lell, B. Schmidt, and M. KachelrieB, “Normalized metal artifact reduction (NMAR) in computed

tomography”, Med. Phys. 37(10):5482-5493, 2012.



FSMAR: Results

Uncorrected

Sd INOYUA

SI E M E Ns E. Meyer, R. Raupach, M. Lell, B. Schmidt, and M. KachelrieB, “Normalized metal artifact reduction (NMAR) in computed
tomography”, Med. Phys. 37(10):5482-5493, 2012.



FSMAR: Results

Uncorrected \ AR NMAR

S4d INOYJIAA

Sd YUM

Patient with bilateral hip prosthesis, Somatom Definition Flash, (C=40/\WW=500).

SI E M E NS E. Meyer, R. Raupach, M. Lell, B. Schmidt, and M. KachelrieB, “Normalized metal artifact reduction (NMAR) in computed

tomography”, Med. Phys. 37(10):5482-5493, 2012.



FSMAR: Results

Uncorrected
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S4d INOYJIAA

Sd YUM

Patient with bilateral hip prosthesis, Somatom Definition Flash, (C=40/\WW=500).

SI E M E NS E. Meyer, R. Raupach, M. Lell, B. Schmidt, and M. KachelrieB, “Normalized metal artifact reduction (NMAR) in computed

tomography”, Med. Phys. 37(10):5482-5493, 2012.



Hip Implant — B50f Kernel

Uncorrected NMAR

(C40/W800), S = 1.5 mm

SI E M E NS E. Meyer, R. Raupach, M. Lell, B. Schmidt, and M. KachelrieB, “Normalized metal artifact reduction (NMAR) in computed

tomography”, Med. Phys. 37(10):5482-5493, 2012.



Hip Implant — B50f Kernel

Uncorrected

(C40/W800), S, = 1.5 mm

SI E M E NS E. Meyer, R. Raupach, M. Lell, B. Schmidt, and M. KachelrieB, “Normalized metal artifact reduction (NMAR) in computed

tomography”, Med. Phys. 37(10):5482-5493, 2012.



Hip Implant — B50f Kernel

Uncorrected NMAR

(C440/W1500), S = 1.5 mm | Sy

SI E M E NS E. Meyer, R. Raupach, M. Lell, B. Schmidt, and M. KachelrieB, “Normalized metal artifact reduction (NMAR) in computed

tomography”, Med. Phys. 37(10):5482-5493, 2012.



Hip Implant — B50f Kernel

Uncorrected NMAR

(C440/W1500), S, = 1.5 mm

SI E M E NS E. Meyer, R. Raupach, M. Lell, B. Schmidt, and M. KachelrieB, “Normalized metal artifact reduction (NMAR) in computed

tomography”, Med. Phys. 37(10):5482-5493, 2012.
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With iMAR

Without iMAR
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.

&

Courtesy of Siemens Healthineers. Data courtesy of University Hospital of Wiirzburg, Germany



With iMAR

without iMAR

CcT

e N
g

XSPECT Bone™

W

f

Cinematic VRT
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DECT and Pseudo Monochromatic Imaging

Pseudo monochromatic imaging is a linear combination of DECT’s
f, and fH volumes: f, = (1 —a) fi, + o fu
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f,, of Patient 1
100 kV / 140 kV Sn

f, of Patient 2
100 kV / 140 kV Sn

DEMAR
Patient 3 not applicable since this is
100 kV a single energy CT scan.

Titerative metal artifact reduction (IMAR) is the Siemens product implementation of FSNMAR.



Further Reading
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A PCCT-based method to generate better prior images for NMAR and FSNMAR

MAR FOR PHOTON-COUNTING CT



Photon-counting normalized metal artifact reduction (NMAR) in diagnostic CT

Achim Byl? and Laura Klein
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Purpose: Metal artifacts can drastically reduce the diagnostic value of computed tomography (CT)
images. Even the state-of-the-art algorithms cannot remove them completely. Photon-counting CT
inherently provides spectral information, similar to dual-energy CT. Many applications, such as mate-
rial decomposition, are not possible when metal artifacts are present. Our aim is to develop a prior-
based metal artifact reduction specifically for photoncounting CT that can correct each bin image
individually or in their combinations.

dkfz.



PCNMAR

Low Resolution
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C =50 HU, W= 700 HU dkfz.



Bone-Emphasized Images

 Instead of segmenting bone, we can apply a non-linear function to
the input bins:

- I'(i,j) = I, ), I(i,j) < 0and I'(i, j) = I(i, j) + 0.011(i, j)%,if I(i,j) = 0

Bin 2 Bone Image
C =50 HU, W= 700 HU

Schiller, Sawall, and KachelrieB. Segmentation-free empirical beam hardening correction for CT. Med. Phys. 42(2): 794-803, 2015 dku.



Basis Sinograms

* The artificial sinograms approximate higher order beam-hardening
artifacts.

- Each artificial sinogram Pjj 1S an element-wise product of two basis
sinograms (i.e. from the b|n or bone images):

— ni . n . pk . nl o —
Piiki = P'bin,low * P'bin,high = P bone,low * P'bone,highs IH/HK+l =2

- All sinograms are individually backprojected.
* For four bins, there are eight basis sinograms.

Kyriakou, Meyer, Prell, and KachelrieB. Empirical beam hardening correction (EBHC) for CT. Med. Phys. 37(10):5179-5188, 2010 dkfz.




Basis Images

0010z
éf\g

f.ix1 = X(bin,”binj*bone **bone,)=> ijkl, e.g. 0101 for bin,*bone,




Optimal Linear Combination

* All basis images f;;, are linearly combined to produce an artifact-
reduced image:

feor = z Cijitfijrt 1000 = (1 —Cco1,00)

ijk,l

where the condition ensures that the coefficients of the original bin
Images add up to one.

* To find the coefficients, we minimize a cost function with a Nelder-
Mead algorithm.



Measurements

« CT data of seven forensic specimen

« Siemens Somatom CounT

* Voltage: U =140 kV

* Tube current: I =300 mAs

 Eff. slice thickness: S 4 = 0.6 mm

* Pixel size: Ax= Ay =0.5 mm

 Energy thresholds chess mode: 25/45/75/90 keV
 Energy thresholds macro mode: 25/90 keV

« Reconstruction kernel: B40f

All experiments were approved by the local ethics committee (S-388/2014)




Results: Case 1

Original FSNMAR PCNMAR FSNMAR Orlglnal PCNMAR Orlglnal

Bin 1

0,=259.8 HU,CNR=52 0,=389HU,CNR=45 0,=42.6 HU, CNR = 4.6

Bin 2

0,=87.5HU, CNR=32  0,=47.1 HU, CNR = 3.3 0, = 38.5 HU, CNR = 3.5

0,=218.0 HU,CNR =5.9 0,=58.8 HU,CNR =5.2 » =42.0 HU, CNR 5.0

C =50 HU, W =700 HU for the images and C = 0 HU, W = 300 HU for difference images




Results: Case 2

Original FSNMAR PCNMAR FSNMAR - Original PCNMAR - Origina
. T NN N\ i

i

Bin 1

Bin 2

.

R=27

o,=42.2 HU, CN

C =50 HU, W =700 HU for the images and C = 0 HU, W = 300 HU for difference images



Results: Case 3

Original FSNMAR PCNMAR FSNMAR - Original PCNMAR - Original
170\ 17

’ v

0,=58.1 HU,CNR =4.1

R
g [ A RN
0,=257.2HU,CNR=4.0

C =50 HU, W =700 HU for the images and C = 0 HU, W = 300 HU for difference images



How Many Bins are Useful?
Original (T1) 2 Bins (25/90 keV) Only 90 keV
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Images show the linear combination result (i.e. without FSNMAR)

C =50 HU, W = 700 HU dk‘fZ.



Low- vs High-Res Linear Combination

T1 Lin. Comb. f=1 Lin. Comb. f=1/2 Lin. Comb. f=1/4

0,=2180 HU, CNR=59  0,=563 HU, CNR=4.1 dA=54.9HU,CNR¥3.6 0,=723HU,CNR=43

ﬁ ‘2,4( N
. ad - 3 . £d A "‘ A, ‘ .‘" » ‘ - AW
0,=2572HU,CNR=40 0,=569HU CNR=2.4  0,=639HU CNR=23  0,=728 HU, CNR =323

fis the sampling relative to full resolution (in x, y, and 0) during optimization
C =50 HU, w=700 HU



Conclusions on PCMAR

« PCNMAR is able to reduce artifacts better than conventional
FSNMAR, keeping more structures intact.

* The extra spectral information from the energy bins is beneficial for
the artifact reduction, especially the high energy bin.

« Using 4 bins instead of 2 bins did not yield better results, but allows
more freedom in the selection of thresholds.

* The linear coefficients can be found with low-resolution images, but
for a sampling of 4, the results were visibly worse.




Often, these are methods to generate better prior images for NMAR and FSNMAR

DEEP MAR
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Gjesteby, 2019

Metal artifact reduction on cervical CT
images by deep residual learning

Metal-Artifact Reduction Using Decp-Lear
Based Sinogram Compl

based Metal Inpainting in the
additional Neighbor
Projection Information

CT/CBCT Metal Arifact Reduction with
Joint Projection-Sinogram Correction

« Takes 32x32 input patch from NMAR image and

+ Very basic CNN

Gjesteby, 2017

produces 20x20 output patch

Claus, 2017

evaluated on ‘with metal

circlein the center (no other positions tested)

Data are heavily simplified (random ellipses)!

Inputs are 2 81x21 sized patches from the sinogram
next to metal patch. Won't work for complex metals.

Relatively small network (4 layers)

Gottschalk, 2020
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Liao, 2019
B

Deep Neural Network for CT Metal Artifact
Reductio Perceptual Loss Function

Gjesteby, 2018

(am

Gjesteby, 2018

« Inputs for the network are the NMAR image and the
high-pass filtered original image

+ Corrects streaks after NMAR

+ Loss function is MSE or perceptual loss (from VGG
network)

+ MSE shows over-smoothing

ained on simulated data
ch residual unit learns residual error

ib

Zhang, 2018

* tal s placed inreal CT Images. Artifacts are
forward and back-projecting soft tissue,

boris, and metal

« Network input is patch of artifactimage /and output
is the residual, i.e. R = /- GT

« Loss function is MSE of the residual

« Learning the residual is found to be better than
learning the artifact-free image (no images)

Gottschalk, 2020

* U-Net corrects CBCT projections

+ Has metal mask and 10 neighbouring projections as
additional input channels

Liao, 2019

« Firstreplaces metal trace in the projections (i.e. fixed

angle but varying ¢ and z)

« Then the ions into si and
uses a second network to improve those

« Both networks are GANs with a U-Net generator and
CNN discriminator

« Uses a Mask Pyramid to ensure the metal mask is.
seen by all stages of the U-Net

« Data are regular CT scans with metal traces from
other patients imposed on them

Metal Artifact Reduction in X-Ray
Computed Tomography

Fast Enhanced CT Metal Artifact Reduction us
Data Domain Dup Learning

= ll--. o __...-..—"' =

DuDoNet: Dusl Domain Network for CT Metal Arifuct Reduction

ing

Gottschalk, 2019

« Corrects C-Arm projection data

+ Data were obtained by placing metal on top of human
knee cadavers

* Loss function is MSE

* Networks are based on U-Net with additional skip
connection from original image to output

+ Basic network can be used to implicitly segment the
metal for the Mask-MAR-Net

+ Providing a metal mask significantly improves
results

+ Results are blurred slightly

Ghani, 2019

+ Metal trace is replaced via a CGAN

+ Uses transfer learning from training data to real data;
not described in depth

* Not applied to medical images

N e oA f RS v e d R : L e difz R R TR '
practical dental computed tomography by
- Interpolation-baeed : 201
Gjesteby, 2019 el o ':"'m"“'""’"""" - é § Xing, 2019
oy e o O - y %
Py 4 R i s e, e f ensa B €A
+ Same network as in previous work Yroca Yana - - _ - - + Perdorin initial LIMAR (o oblain images with
« Detail image is the high-pass filtered original image ~ -~ & ~ . interpolation artifacts
* Detail image and NMAR image are both put as inputs - . . * Apply U-Net to pre-corrected images to reduce
in 2 streams that converge later in the CNN S & VS V& S ) artifacts
+ Network uses residual error and cost function is a s _ = e __ + Network minimizes L2-norm loss outside of the metal
combination of MSE and perceptual loss £ - regions
N
- -
& v g v

Yu, 2018

Training data are generated from clinical data with
metal artifacts added afterwards through
forward- & back:

Cost function is MSE

CNN gets patches from the artifact, BHC corrected,
and LI corrected image as input, produces corrected
patches

Prior image is generated from CNN result by
segmenting water and setting it to the average value
of all water pixels and leaving bone intact

Metal trace in the uncorrected sinogram is replaced
with values from the prior image

Having different types of MAR as input improves
results

Lin, 2019

Input are LI pre-corrected sinograms/images
Firstimproves the sinograms through a U-Net with
mask pyramid (o all parts of the U-Net see the mask)

Then applies FBP (Radon Inversion Layer) and uses
the result as input for a second U-Net, which
improves it in image domain

Unclear how/if the LI and CNN results are combined
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MAR Example

 Deep CNN-driven patch-based combination of the advantages of
several MAR methods trained on simulated artifacts

Input Data Feature maps Feature maps Feature maps Feature maps Output

32@64x 64 32@64x 64 32@64% 64 32@64x 64 1@64x% 64

Convolution Convolution Convolution Convolution .
+RelU +RelU +RelU +RelU Convolution

- followed by segmentation into tissue classes

- followed by forward projection of the CNN prior and replacement of
metal areas of the original sinogram

- followed by reconstruction

Yanbo Zhang and Hengyong Yu. Convolutional Neural Network Based Metal Artifact Reduction in X-Ray

Computed Tomography. TMI 37(6):1370-1381, June 2018.
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MAR Example 2

* Detail image is the high-
pass filtered original image.

Detail image and NMAR
image are both put as
inputs in 2 streams that
converge later in the CNN.

Network uses residual error
and the loss function is a
combination of MSE and
perceptual loss.

Residual Unit
Residual Unit
Residual Unit
Residual Unit

Conv+BN+RelLU
Conv+BN+RelLU

‘ Conv+BN+ReLU
Conv+RelLU

|

Residual Unit
Residual Unit

= =
= | =
- =
|| s
= =
3|2
|| 3
o o

Conv+BN+RelLU Conv+BN+RelLU

(
g

Figure2. Metwork structure for DestreakNet. Two parallel streams, fand g, each contain an initial layer followed by 20 residual units.
Patches from the NMAR image and patches from the detail image are input to fand g, respectively. The outputs of these streams

are merged in the feature space, and then passed through h, which contains eight parameter layers and a final layer, to yield the final
output. All convolution layers have 32 filters (except for the final layer, which has only one filter), each of which hasa 3 x 3 kernel
and uses zero-padding. Batch normalization (BN) is used after each convolution layer (except for the final convolution layer), and is
tollowed by a rectified linear unit { ReLll). The input and output patches are of size 56 = 56.

Lars Gjesteby et al. "A dual-stream deep convolutional network for
reducing metal streak artifacts in CT images." PMB 64.23 (2019): 235003. dkfz.



MAR Example 2

* Detail image is the high-
pass filtered original image.

* Detail image and NMAR
image are both put as
inputs in 2 streams that
converge later in the CNN.

 Network uses residual error
and the loss function is a
combination of MSE and
perceptual loss.

Lars Gjesteby et al. "A dual-stream deep convolutional network for
reducing metal streak artifacts in CT images." PMB 64.23 (2019): 235003.

Detail Image

Artifact-Free Truth Uncorrected

Prior Image

CPCE-MSE

.
5
' 4 ‘...
7

>

Figure5. Hip prostheses case. Left to right, top to bottom: artifact-free truth; initial uncorrected reconstruction; detail image for
network input; prior image used to calculate NMAR correction; NMAR-corrected image; direct network using MSE loss; proposed
network without detail image stream using MSE loss; proposed network using MSE loss; proposed network using perceptual loss.
The blue arrows indicate areas that our proposed network recovered better than the compared methods. The yellow arrows indicate
regions in which our network was not able to recover accurate anatomy. Some of the created artifacts look very similar to lesions.
Display range is [—200 300] HU.



Metal artifact reduction for practical dental computed tomography by
improving interpolation-based reconstruction with deep learning

Kaichao Liang, Li Zhang, and Hongkai Yang
Department of Engineering Physics, Tsinghua University, Beijing 100084, China
Key Laboratory of Particle & Radiation Imaging (Tsinghua University), Ministry of Education, Beijing, China

Yirong Yang

Department of Engineering Physics, Tsinghua University, Beijing 100084, China

Zhigiang Chen, and Yuxiang Xing®

Department of Engineering Physics, Tsinghua University, Beijing 100084, China
Key Laboratory of Particle & Rad

]
&
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[=9
-
s}

- Conv+ Relu+ Batch Norm - Conv+ Relu - Pooling ‘ Unpooling = = = » Coneat

Fic. 3. U-Net architecture.

Liang, Kaichao, et al. "Metal artifact reduction for practical dental computed tomography by improving
interpolation-based reconstruction with deep learning." Medical Physics 46.12 (2019): e823-e834.




Fic. 8. Four real MAR test cases. (a) Reconstructions with no MAR, (b) I-MAR, (c) WLS reconstruction, (d) DL-MAR. (e) [-DL-MAR + metal. dkfz
Q



MAR without Machine Learning is a Good Alternative:
Frequency Split Normalized MAR?-2

Uncorrected FSLIMAR FSNMAR

&
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Patient with bilateral hip prosthesis, Soma;tom Definition Flash, (C=40/W=500).

Normalized MAR (NMAR) FSMAR: Scheme
lnte:eolatlon
Normalized sinogram Interpol. & norm. Uncorrected Me!a NMAR
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— / | —— g i
{ 3 / s g BN ——
\ S \ 8. 7
1 I i -
Original sinogram Metal pro]<ﬂ0m nnnnnnnnnnn . Im. Corrected sinogram — i ‘\"QW’,
S E - ()=
*
| t t -
Uncorrected Image Metal image Ternary image Corrected image
Ly
. - (o~ I ¢ )
w S S w
| 1 4
Thresholding

SI E M E NS 1E. Meyer, M. KachelrieB et al. Normalized metal artifact reduction (NMAR) in computed tomography. Med. Phys. 37(10):5482-5493, Oct. 2010.

2E. Meyer, M. KachelrieB et al. Frequency split metal artifact reduction (FSMAR) in CT. Med. Phys. 39(4):1904-1916, April 2012.



Why do NNs Appear to Always Outperform
Classical Solutions?

The answer is:
Novelty Bias

This means
— the proposed (new) method is highly optimized by the author
— the gold standard (old) method is implemented with less rigor

Today, avoiding novelty bias is simple:

— For any method, be it a NN or a conventional algorithm one has open parameters (millions for NN,
dozens for conventional).

— Determine them using
» the same non-linear minimization framework
» the same training data
» the same objective function

If this is not done, any comparison with the conventional method is invalid.



Summary on Deep MAR

« Most common uses for networks:
— Improve image quality in image domain after MAR
— Use network for the sinogram inpainting
— Produce a prior image, e.g. for NMAR

 Additional observations:

— Training data are often produced by segmenting an artifact-free CT image, adding metal
and applying a polychromatic forward projection to different types of tissue separately.

— As of today, it seems hard to outperform FSNMAR, or hard to give convincing clinical
examples.




Thank You!

* This presentation will soon be available at www.dkfz.de/ct.

* Job opportunities through DKFZ’s international PhD or Postdoctoral
Fellowship programs (marc.kachelriess@dkfz.de).

« Parts of the reconstruction software were provided by
RayConStruct® GmbH, Niirnberg, Germany.




	Folie 3: Metal
	Folie 4: Metal artifacts are
	Folie 5: Metal Artifact Reduction (MAR)
	Folie 6: GE‘s Solution Combines DECT Acquisition with Data Inpainting …
	Folie 7: … but the Results are not Convincing!
	Folie 8: MAR1
	Folie 9: MAR2
	Folie 10: Normalized MAR (NMAR)
	Folie 11: MAR1
	Folie 12: MAR2
	Folie 13: Normalized MAR (NMAR)
	Folie 14: MAR1
	Folie 15: MAR2
	Folie 16: Normalized MAR (NMAR)
	Folie 17: Results and Comparison: Patient Data
	Folie 18: Results and Comparison: Patient Data
	Folie 19: Results and Comparison: Patient Data
	Folie 20: NMAR: Results
	Folie 21: NMAR: Results
	Folie 22: FSMAR: Scheme
	Folie 23: FSMAR: Results
	Folie 24: FSMAR: Results
	Folie 25: FSMAR: Results
	Folie 26: FSMAR: Results
	Folie 27: Hip Implant – B50f Kernel
	Folie 28: Hip Implant – B50f Kernel
	Folie 29: Hip Implant – B50f Kernel
	Folie 30: Hip Implant – B50f Kernel
	Folie 31
	Folie 32
	Folie 33
	Folie 34: DECT and Pseudo Monochromatic Imaging
	Folie 35: Pseudo Monochromatic Imaging
	Folie 36
	Folie 37: Further Reading
	Folie 38: MAR for Photon-Counting CT
	Folie 39
	Folie 40: PCNMAR
	Folie 41: Threshold & Bin Images
	Folie 42: Bone-Emphasized Images
	Folie 43: Basis Sinograms
	Folie 44: Basis Images
	Folie 45: Optimal Linear Combination
	Folie 49: Measurements
	Folie 51: Results: Case 1
	Folie 52: Results: Case 2
	Folie 53: Results: Case 3
	Folie 54: How Many Bins are Useful?
	Folie 55: Low- vs High-Res Linear Combination
	Folie 56: Conclusions on PCMAR
	Folie 57: Deep MAR
	Folie 58: Deep MAR Examples
	Folie 59: Deep MAR Examples
	Folie 60: MAR Example
	Folie 61
	Folie 62: MAR Example 2
	Folie 63: MAR Example 2
	Folie 64
	Folie 65
	Folie 67: MAR without Machine Learning is a Good Alternative:  Frequency Split Normalized MAR1,2
	Folie 68: Why do NNs Appear to Always Outperform Classical Solutions?
	Folie 69: Summary on Deep MAR
	Folie 70: Thank You!

