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Scatter Artifacts

• Measurement = Primary + Scatter

• Interaction processes
– C = Compton scatter

– R = Rayleigh scatter

– P = photo effect

Primary

Primary + Scatter

C or R

P
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Scatter Artifact Reduction

• Several algorithmic methods found in the literature:
– Monte Carlo-based (slow but good)

– Convolution-based (fast, but not accurate)

– Simple subtraction methods (even faster, but less accurate)

– Deep scatter estimation (DSE, fast and accurate)

– …

• Hardware-based methods
– Anti scatter grid

– Beam blockers

– Primary modulators

– …
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To Grid or not to Grid?

• A common misbelieve is that a good or perfect scatter reduction 
software can be used instead of using anti scatter grids.

• This is wrong, as will be shown in the next slices.

• Facts:
– Anti scatter grids are beneficial iff the scatter-to-primary ratio (SPR) exceeds a certain 

threshold, i.e. for large cross-sections.

– Scatter reduction software is always beneficial, with or without anti scatter grid.

– Noise reduction software is always beneficial, with or without anti scatter grid.
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h

d

D

Cover thickness: t, e.g. 0.2 mm Al or 0.25 mm C
Height of strips: h
Thickness of strips: d, e.g. 0.04 mm Pb
Gap between strips: D, e.g Al or C-fiber
Grid ratio: h/D, e.g. 8 or 15
Grid frequency: 1/(D+d), e.g. 40/cm
Geometrical efficiency: D/(D+d)
Height of interspace material: H

H

t

Primary intensity: IP
Scatter intensity: IS
Primary transmission: TP < 1, e.g. 75%
Scatter transmission:  TS > 0, e.g. 30%

No grid: TP = TS = 1
Ideal grid: TP = 1, TS = 0

Drawn to grid ratio 4:1 and infinite focus distance.
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To Grid or not to Grid?

• Only primary counts for the signal, but primary and scatter count for 
noise. Thus,

• SNR improvement factor (SNR with grid / SNR no grid)

• The case TS = 0 is instructive and yields

with SPR being the scatter-to-primary ratio.

• Use a grid only for cases with SNRif  1.

• Scatter correction and noise reduction algorithms are to be used 
complementary and not as an alternative to grids!
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Clinical CT Detector Module Flat Detector (e.g. 40 × 30 cm)

Detector Technology

Differences in:

• Absorption efficiency

• Afterglow

• Anti scatter grid

• Dynamic range

• Cross-talk

• Framerate

• …

Siemens Varex
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PRIMARY MODULATOR
Scatter estimation with the help of a pre patient modulator
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Existing Scatter Correction Methods

• Remove or prevent scattered radiation
– anti scatter grid, slit scan, large detector distance, …

• Compute scatter to subtract it 
– convolution-based, Monte Carlo-based, …

• Measure scatter distribution and subtract it
– collimator shadow, beam blockers, primary modulators, …

• Literature:
– E.-P. Rührnschopf and K. Klingenbeck, “A general framework and review of scatter 

correction methods in x–ray cone–beam computerized tomography. Part 1: Scatter 
compensation approaches,”  Med. Phys., vol. 38, pp. 4296–4311, July 2011.

– E.-P. Rührnschopf and K. Klingenbeck, “A general framework and review of scatter 
correction methods in x–ray cone beam CT. Part 2: Scatter estimation approaches,” 
Med. Phys., vol. 38, pp. 5186–5199, Sept. 2011.
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Primary Modulation-based Scatter Estimation 
(PMSE)

• Idea: Insert a high frequency modulation 
pattern between the source and the object 
scanned

• Rationale: The primary intensity is 
modulated. The scatter is created in the 
object and only consists of low frequency 
components.

• Method: Estimate low frequency primary 
without scatter by Fourier filtering 
techniques  

L. Zhu, R. N. Bennett, and R. Fahrig, “Scatter correction method for x–ray CT using primary modulation: 
Theory and preliminary results,” IEEE Transactions on Medical Imaging, vol. 25, pp. 1573–1587, Dec. 2006.

Shifted primary

Scatter + primary
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Primary Modulation-based Scatter Estimation 
(PMSE)

Key hypothesis: Low-frequency components dominate the scatter 
distribution even if high-frequency components are present in the 
incident x-ray intensity distribution.

Scatter S can be estimated by

The measurement with a modulator can 
be expressed in Fourier space with:

with H(ω) being a low-pass filter

L. Zhu, R. N. Bennett, and R. Fahrig, “Scatter correction method for x–ray CT using primary modulation: 
Theory and preliminary results,” IEEE Transactions on Medical Imaging, vol. 25, pp. 1573–1587, Dec. 2006.
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Primary Modulation-based Scatter Estimation 
(PMSE)

• Advantages: 
– Non-destructive measurement of the scatter distribution

– Works with high accuracy on laboratory setups

– Corrected projection data can be used for projective imaging (fluoroscopy) or for 
tomographic reconstruction

• Drawbacks:
– Sensitive to non-linearities due to polychromaticity of x-rays. Ring artifacts are 

introduced1. Can be resolved using ECCP2. 

– Requires exact rectangular pattern on the detector. Very sensitive to non-idealities of 
the projected modulation pattern (blurring, distortion, manufacturing errors of the 
modulator). Can be resolved using iPMSE (this work).

1H. Gao, L. Zhu, and R. Fahrig. Modulator design for x-ray scatter correction using primary modulation: Material selection. Med. Phys. 37:4029–4037, 2010.
2R. Grimmer, R. Fahrig, W. Hinshaw, H. Gao, and M. Kachelrieß. Empirical cupping correction for CT scanners with primary modulation (ECCP). Med. Phys. 39:825-831, 2012.
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Aim

Create a robust scatter estimation method which is able to estimate the 
scatter distribution with high accuracy using a modulator with an 
arbitrary high frequency pattern.

“Ideal” modulator
(projection of a copper modulator)

Non-ideal modulator
(projection of the erbium modulator)
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Modulation Process 
in the Rawdata Domain

• Measured data:

• Solving for the 
primary intensity:

• Error of primary 
estimate:

Measured intensity Modulation pattern

Primary intensity

Scatter intensity

The modulation pattern remains visible as long 
as the scatter estimation error is not zero.

Scatter estimate error

L. Ritschl, R. Fahrig, M. Knaup, J. Maier, and M. Kachelrieß. Robust primary modulation-based scatter estimation for 
cone-beam CT. Med. Phys. 42(1):469-478, January 2015.
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Is there a cost function which is sensitive to 
the modulation pattern?

Regard the image sequence                                        :

L. Ritschl, R. Fahrig, M. Knaup, J. Maier, and M. Kachelrieß. Robust primary modulation-based scatter estimation for 
cone-beam CT. Med. Phys. 42(1):469-478, January 2015.
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Optimization Problem

• Subject to                        solve:

• Assumption:
In a sufficiently small and sufficiently 
large sub image the constraint can be 
satisfied by assuming cs = const.

• Solution:
Solve cost function for each possible sub 
image separately.

Scatter estimate

Measurement

L. Ritschl, R. Fahrig, M. Knaup, J. Maier, and M. Kachelrieß. Robust primary modulation-based scatter estimation for 
cone-beam CT. Med. Phys. 42(1):469-478, January 2015.
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Measured Intensity

L. Ritschl, R. Fahrig, M. Knaup, J. Maier, and M. Kachelrieß. Robust primary modulation-based scatter estimation for 
cone-beam CT. Med. Phys. 42(1):469-478, January 2015.
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iPMSE Estimation

L. Ritschl, R. Fahrig, M. Knaup, J. Maier, and M. Kachelrieß. Robust primary modulation-based scatter estimation for 
cone-beam CT. Med. Phys. 42(1):469-478, January 2015.
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Cadaver Head and Lung Phantom

• Scan parameters
– 80 kV

– 30 mA

– 13 ms pulse length

– 625 projections of 360°

– 244 mAs

• No antiscatter grid

• Modulator
– Material: Erbium

– Thickness: 0.0254 mm

– Pattern size: 0.457 mm

• ECCP1 preprocessing

• iPMSE scatter removal

• FDK reconstruction 

1R. Grimmer, R. Fahrig, W. Hinshaw, H. Gao, and M. Kachelrieß. Empirical cupping correction for CT scanners with primary modulation 
(ECCP). Med. Phys. 39:825-831, 2012.
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Cadaver Head Axial Slice

Slit scan Uncorrected iPMSE

C = 200 HU, W = 800 HU 

L. Ritschl, R. Fahrig, M. Knaup, J. Maier, and M. Kachelrieß. Robust primary modulation-based scatter estimation for 
cone-beam CT. Med. Phys. 42(1):469-478, January 2015.
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Lung Phantom Scan

Slitscan

Axial Coronal Sagittal

Uncorrected

iPMSE

C = 0 HU, W = 1000 HU 

L. Ritschl, R. Fahrig, M. Knaup, J. Maier, and M. Kachelrieß. Robust primary modulation-based scatter estimation for 
cone-beam CT. Med. Phys. 42(1):469-478, January 2015.
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Discussion

• Highly accurate scatter estimation and removal is also possible 
using irregular modulation patterns.

• Non-idealities of the modulation pattern and penumbra effects are 
optimally handled with iPMSE.

• The combination ECCP and iPMSE guarantees quantitative flat 
detector images without scatter artifacts.

• Accurate scatter correction opens the field of quantitative flat 
detector CT.

L. Ritschl, R. Fahrig, M. Knaup, J. Maier, and M. Kachelrieß. Robust primary modulation-based scatter estimation for 
cone-beam CT. Med. Phys. 42(1):469-478, January 2015.
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MONTE CARLO
The gold standard for scatter estimation
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Monte Carlo Scatter Estimation

• Simulation of photon trajectories according to physical interaction 
probabilities.

• Simulating a large number of photon trajectories well approximates 
the actual scatter distribution.

Scatter distribution of an 
incident needle beam

Complete scatter 
distribution
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Monte Carlo Simulation of Radiation Transport

• The quantity Q of interest could be the number of photons reaching 
the detector or the energy deposited in the detector.

• However, the probability density p(Q) is usually unknown.

• Simulation of individual photon tracks (= random walk from source 
to detector) yields a practical method to sample Qi
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Sampling of the X-Ray Energy

• The spectral distribution of x-rays w(E) can be determined using 
theoretical models (e.g. the model of Tucker1).

• Normalizing the x-ray spectrum to unit area allows to interpret it as 
probability density function:

• Sampling from cumulative distribution, e.g. with the upsampling method.

1Tucker D. M., Barnes G.T., Chakraborty D.P. (1991), Semiempirical model for generating tungsten target x-ray spectra. Med. Phys. 18, 211–218.
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Sampling of the Initial Flight Direction

• Assuming an isotropic emission of the x-ray source, the probability 
density function of the azimuthal angle  and the polar angle  are 
given as 

• The inverse transform method yields

• The initial flight direction is given by
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Path Length Sampling

• The probability pR(r)dr of an interaction between r and r + dr is

• The cumulative probability distribution is

• The path length r is sampled using the inverse transform method:
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Path Length Sampling
Woodcock sampling

• Numerical inversion of                                    might be computationally 
expensive.

• Woodcock sampling is a faster alternative:
1. Sample path length according to maximum attenuation (for a single material there is an 

analytical inverse)

2. Sample uniform random number  :     
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Path Length Sampling
Woodcock sampling

• Numerical inversion of                                    might be computationally 
expensive.

• Woodcock sampling is a faster alternative:
1. Sample path length according to maximum attenuation (for a single material there is an 

analytical inverse)

2. Sample uniform random number  :     

r
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Sampling of Interaction Effect

• Considering x-ray eneries used for medical imaging, there are three relevant 
interaction effects: photoelectric absorption (P), Compton scattering (C) and 
Rayleigh scattering (R).

• Interaction probabilities1:

• Cumulative probability:

• Sampling:

– Sample uniform random number  :

1Attenuation coefficients can be taken from EPDL library: Cullen D.E., Hubbell J.H., Kissel L. (1997), EPDL97: The Evaluated Photon Data Library, ’97 version. 
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Sampling of Flight Direction
• The polar angle of the flight direction can be sampled using 

tabulated values of differential cross-sections1

• Normalization to unit area allows to interpret the cross-section as 
probability density function

• Sampling using inverse transform method

1Attenuation coefficients can be taken from EPDL library: Cullen D.E., Hubbell J.H., Kissel L. (1997), EPDL97: The Evaluated Photon Data Library, ’97 version. 
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Updating the X-Ray Energy

• After any interaction, the energy E of the x-ray has to be updated
( E→ E´) according to the interaction effect.

• Photoelectric effect
– X-ray is absorbed: (neglecting K-escape)

• Compton scattering
– Klein-Nishina:

where  is the scatter angle with respect to the flight direction.

• Rayleigh scattering
– Coherent scattering: 
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Variance Reduction
Biased sampling

• Sample from a biased probability density function

• Assign a weight          to each particle to correct for the biased 
sampling:

• The MC estimate is given as:
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Variance Reduction
Biased sampling

• Sample from a biased probability density function

• Assign a weight          to each particle to correct for the biased 
sampling:

• The MC estimate is given as:

X-ray source

X-ray detector

Example: sampling of initial flight direction of an isotropic emitter
▪ Real sampling: Sampling of a random angle
▪ Biased sampling: neglect all x-rays that are blocked by collimator    
→ Sample 

Collimator
X-ray

Real pdf:

Biased pdf:

Weight:



41

Variance Reduction
Biased sampling

• Sample from a biased probability density function

• Assign a weight          to each particle to correct for the biased 
sampling:

• The MC estimate is given as:

X-ray source

X-ray detector

Example: sampling of the interaction effect
▪ Real sampling: sampling of photo effect, Compton and Rayleigh scatter.
▪ Biased sampling: neglect photo effect since absorbed photons do not 

contribute to the scatter distribution

Real pdf:

Biased pdf:

Weight:Absorption
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Variance Reduction
Biased sampling

• Sample from a biased probability density function

• Assign a weight          to each particle to correct for the biased 
sampling:

• The MC estimate is given as:

Example: sampling of path lengths
▪ Real sampling: sampling from exponential distribution.
▪ Biased sampling: sampling from uniform distribution to increase 

number of interactions at higher depth

Real pdf:

Biased pdf:

Weight:

0

0,005

0,01

0,015

0,02

0 20 40 60 80 100

Real pdf

Biased pdf

Depth / mm
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Variance Reduction
Particle splitting / Russian roulette

• Particle splitting
– Split photon into N photons if it moves towards a region of interest (e.g. to the detector).

– Assign a weight of                        to each split photon.

• Russian roulette
– Kill a photon with probability K if it moves away from the region of interest (i.e. to the 

detector).

– Assign a weight of                             if the photon survives the Russian roulette.
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Variance Reduction
Forced Detection

• X-ray may leave the volume without hitting the detector → Simulated 
track does not contribute to the 

• Score the probability of hitting the detector at every interaction point

• Apply a weight that corresponds to this probability

X-ray source

X-ray detector

X-ray leaves volume
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KERNEL-BASED SCATTER ESTIMATION
Fast, but not very accurate
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Kernel-Based Scatter Estimation

• The intensities (typically primary plus scatter) I, either at the detector or in the volume, undergo a 
pointwise transfer function T, also known as the scatter potential. Then they are convolved with 
the scatter kernel.

• The scatter kernels K may be shift variant (general case) or shift invariant (special case) and they 
depend on many parameters c, such as the tube voltage, projection angle, object size and 
composition, scatter geometry, anti scater grids, …

3D scatter kernels
(high complexity)

2D scatter kernels
(low complexity)
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2D (Beam Spread) Scatter Kernels

• Typical scatter potentials

• Typical scatter kernels 
– Shift invariant scatter kernels, e.g. Gaussian, sum of Gaussians, exponentials …

– Shift variant kernels

» Kernels as a function of the water equivalent thickness at both points

» Kernels can be Gaussian, exponential, sums thereof, …

– Asymmetric kernels

p

pep

101
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PEP

A
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PEP

B



51

PEP

C
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PEP for CT

C

A

B

I0
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PEP for PET

C

A

B


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PEP for PET

C

A

B


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HYBRID SCATTER CORRECTION
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Scatter Estimation

Patient-specific, many computations Not patient-specific, few computations

Measured intensities (primary plus scatter)

Reconstruction

Simulation of physical photon paths 
based on density and material 
distribution

Physical effects:
Photo effect
Compton scattering
Rayleigh scattering

Monte Carlo-based scatter estimate

Monte Carlo-based

* Ohnesorge et al., Efficient scatter correction algorithm for third and fourth generation CT scanners, Eur. Radiol. 9:563-569, 1999.

Convolution of the 
scatter potential Φ with 
scatter kernel K

Ips: Primary plus scatter 
intensity

c (vector): Open 
coefficients

We used the convolution-
based method of 
Ohnesorge et al.*

Convolution-based
Measured intensities (primary plus scatter)

Convolution-based scatter estimate
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Hybrid Scatter Correction
Measured intensities (Primary plus scatter)

Reconstruct initial 
uncorrected CT 

image

Uncorrected

Subtract scatter 
from measured 
intensities and 

reconstruct 
corrected image

Corrected

Calibrate the open coefficients in 
the convolution−based model

Compute scatter estimate 
with the convolution−based 

model

Convolution−based scatter estimate

Coarse Monte Carlo 
simulation

Noisy Monte Carlo scatter estimate

M. Baer and M. Kachelrieß. Hybrid scatter correction for CT imaging. Phys. Med. Biol. 57(21):6849-6867, October 2012.
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Number of Calibration Steps
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Monochromatic simulation study in clinical CT 
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Scatter simulation by Monte Carlo
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M. Baer and M. Kachelrieß. Hybrid scatter correction for CT imaging. Phys. Med. Biol. 57(21):6849-6867, October 2012.
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Number of Photons
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Monochromatic simulation study in clinical CT 
geometry
Scatter simulation by Monte Carlo

NPh,ref : Photon number for the low noise reference 
Monte Carlo simulation used for the uncorrected image
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M. Baer and M. Kachelrieß. Hybrid scatter correction for CT imaging. Phys. Med. Biol. 57(21):6849-6867, October 2012.



62

Scatter Correction Results

• Measurements in cone-beam CT geometry

• Reference image:
– Monte Carlo scatter correction and EBHC for beam hardening.

• Hybrid scatter correction (HSC):
– Monte Carlo simulation for only 16 projections and 100 times 

less photons than in the reference Monte Carlo correction.

• HSC+EBHC:
– Here we additionally applied the empirical beam-hardening 

correction (EBHC).
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Scatter is Smooth 
only in Intensity Domain!

Intensity
Domain

Log
Domain

Image
Domain

Primary Primary + Scatter

+

+

+

=

=

=

log

recon

Scatter

recon

log

recon
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Scatter is Smooth 
only in Intensity Domain!

=+Intensity 
Domain

Primary Scatter Primary + Scatter

log

+ =

log

Log 
Domain

recon reconrecon

Image 
Domain + =

C = 0 HU, W = 600 HU C = 0 HU, W = 600 HU C = 0 HU, W = 600 HU 

C = 2, W = 5 C = 2, W = 5 C = 0.0, W = 2.0 

C = 0.05, W = 0.20 C = 0.05, W = 0.20 C = 0.01, W = 0.01 
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Scatter is Smooth 
only in Intensity Domain!

=+
Intensity 
Domain

Primary Scatter Primary + Scatter

log

+ =

log

Log 
Domain
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Domain + =

C = 0 HU, W = 600 HU 

C = 2.8, W = 5.6 C = 0.0, W = 4.0 

C = 0.05, W = 0.20 C = 0.03, W = 0.02 

C = 0 HU, W = 2000 HU C = 0 HU, W = 1200 HU 

C = 2.8, W = 5.6 

C = 0.05, W = 0.20 
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DEEP SCATTER ESTIMATION (DSE)
Real-time scatter estimation with highest accuracy
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Motivation

• X-ray scatter is a major cause of artifacts in CT and CBCT.

• Appropriate scatter correction is crucial to maintain the diagnostic 
value of the CT examination.

+

CT image

scatter

Primary intensity

CT reconstruction

CT reconstruction

C = 0 HU, W = 800 HU
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Scatter Correction

Scatter suppression
• Anti-scatter grids

• Collimators

• …

Scatter estimation
• Monte Carlo simulation

• Kernel-based approaches

• Boltzmann transport

• Primary modulation

• Beam blockers

• …

-

Measured intensity Scatter estimate
Anti-scatter grid

Collimator
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Monte Carlo Scatter Estimation

• Simulation of photon trajectories according to physical interaction 
probabilities.

• Simulating a large number of photon trajectories well approximates 
the actual scatter distribution.

Scatter distribution of an 
incident needle beam

Complete scatter 
distribution
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Deep Scatter Estimation
Network architecture & scatter estimation framework

3 x 3 Convolution, ReLU

2 x 2 Max. Pooling
2 x 2 Upsampling
Depth Concatenate

1 x 1 Convolution, ReLU

Input:

Output:
scatter estimate 384 × 256 × 4

12 × 8 × 480

24 × 16 × 320

48 × 32 × 160

96 × 64 × 80

192 × 128 × 40

6 × 4 × 960Projection data

Downsampling
and application 

of operator
Upsampling
to original 

size

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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+ +

Primary intensity Poisson noiseMC scatter simulationCBCT Setup

Input

Desired output

Training the DSE Network

• Simulation of 6000 projections using 

different heads and acquisition parameters 

(80 kV, …, 140 kV in steps of 20 kV).

• Splitting into 80% training and 20% 

validation data.

• Mean S/P = 0.9

• 90th percentile S/P = 1.32

• Training minimizes MSE pixel-wise loss on 

a GeForce GTX 1080  for 80 epochs.

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Testing of the DSE Network for Simulated Data 
(at 120 kV)

+ +

Primary intensity Poisson noiseMC scatter simulationCBCT Setup

Input

• Application of the DSE network to predict scatter for 
simulated data of a head (different from training data).

Ground truth

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Training Performance for Different Inputs
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J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Validation Performance for Different Inputs
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Validation loss, T(p) = p

Validation loss, T(p) =  p*exp(-p)

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Ref 1: Kernel-Based Scatter Estimation

• Kernel-based scatter estimation1:
– Estimation of scatter by a convolution of the scatter source term T(p) with a scatter 

propagation kernel G(u, c):

MC scatter simulationScatter estimateSamples of the 
training data set

Detector 
coordinate

1 B. Ohnesorge, T. Flohr, K. Klingenbeck-Regn: Efficient object scatter correction algorithm for third and fourth generation CT scanners. Eur. Radiol. 9, 563–569 (1999). 

Open 
parameters:

Open 
parameters:
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Ref 2: Hybrid Scatter Estimation

• Hybrid scatter estimation2 :
– Estimation of scatter by a convolution of the scatter source term T(p) with a scatter 

propagation kernel G(u, c):

Open 
parameters:

Open 
parameters:

2 M. Baer, M. Kachelrieß: Hybrid scatter correction for CT imaging. Phys. Med. Biol. 57, 6849–6867 (2012). 

Coarse MC simulationScatter estimateSamples of the test 
data set

Detector 
coordinate



89

Results on Simulated Projection Data
Scatter ground 

truth (GT)

Primary 

intensity

(Kernel – GT) 

/ GT 

(Hybrid - GT)

/ GT

(DSE – GT)    

/ GT

View #1

View #2

View #3

View #4

View #5

C = 0%, W = 50%C = 0%, W = 50%C = 0%, W = 50%C = 0.5, W = 1.0 C = 0.04, W = 0.04

14.1%
mean 

absolute
percentage 

error
over
all

projections

7.2%
mean 

absolute 
percentage

error
over
all

projections

1.2%
mean 

absolute
percentage 

error
over
all

projections

DSE trained to estimate scatter from primary plus scatter: High accuracy
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Results on Simulated Projection Data
Scatter ground 

truth (GT)

Primary 

intensity

(Kernel – GT) 

/ GT 

(Hybrid - GT)

/ GT

(DSE – GT)    

/ GT

View #1

View #2

View #3

View #4

View #5

C = 0%, W = 50%C = 0%, W = 50%C = 0%, W = 50%C = 0.5, W = 1.0 C = 0.04, W = 0.04

14.1%
mean 

absolute
percentage

error
over
all

projections

7.2%
mean 

absolute
percentage

error
over
all

projections

6.4%
mean 

absolute
percentage

error
over
all

projections

DSE trained to estimate scatter from primary only: Low accuracy
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Results on Simulated Projection Data
Scatter ground 

truth (GT)

Primary 

intensity

(Kernel – GT) 

/ GT 

(Hybrid - GT)

/ GT

(DSE – GT)    

/ GT

View #1

View #2

View #3

View #4

View #5

C = 0%, W = 50%C = 0%, W = 50%C = 0%, W = 50%C = 0.5, W = 1.0 C = 0.04, W = 0.04

14.1%
mean 

absolute
percentage 

error
over
all

projections

7.2%
mean 

absolute 
percentage

error
over
all

projections

1.2%
mean 

absolute
percentage 

error
over
all

projections

DSE trained to estimate scatter from primary plus scatter: High accuracy
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Reconstructions of Simulated Data

No Correction
Kernel-Based 

Scatter Estimation
Hybrid Scatter 

Estimation
Deep Scatter 
EstimationGround Truth
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C = 0 HU, W = 1000 HU

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Testing of the DSE Network for Measured Data 
(120 kV)

• Measurement of a head phantom at 
our in-house table-top CT.

• Slit scan measurement serves as 
ground truth.

X-ray source

Detector

Measurement to be corrected

X-ray source

Detector

Ground truth: slit scan

Collimator

DKFZ table-top CT

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Reconstructions of Measured Data

No Correction
Kernel-Based 

Scatter Estimation
Hybrid Scatter 

Estimation
Deep Scatter 
EstimationSlit Scan
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C = 0 HU, W = 1000 HU
J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.

J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.

Parameters of the two comparison methods trained 
in the same way as those of DSE: same data, 

same loss function, same optimization algorithm.

DSE
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Simulation-based 
artifact correction

Standard 
reconstruction

J. Maier, M. Kachelrieß et al. Simulation-based artifact correction (SBAC) for 
metrological computed tomography. Meas. Sci. Technol. 28(6):065011, May 2017.

Simulation-based removal of
• beam hardening artifacts
• off-focal radiation artifacts
• focal spot blurring artifacts
• detector blurring artifacts

• scatter artifacts
• …
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Simulation Study: Training Data

• Simulation of 16416 projections using different objects and parameter settings to 
train the DSE network.

• Training on a GeForce GTX 1080 for 80 epochs using the Keras framework, an 
Adam optimizer and a mini-batch size of 16.

Poisson noise

MC scatter 

Tube 
Voltage:
225 kV, 
275 kV, 
320 kV 

Tilt angle:

0° 30° 60° 90°

Compressor
(Titanium

alloy)

Cylinder 
head

(Aluminum)

Casting
(Aluminum)

Cassette
(Steel)

+

+Tin 
Prefilter:
1.0 mm, 
2.0 mm

Isocenter-detector-distance
400 mm, 500 mm, 600 mm  

Scaling (size)
0.8, 1.2

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Simulation Study: Testing Data

• Simulation of a tomography (720 projection / 360°) of five components using 
acquisition parameters that differ from the ones used to generate the training data 
set.

Poisson noise

MC scatter 

Tube 
Voltage:
250 kV

Tilt angle:

15°

Compressor
(Titanium

alloy)

Cylinder 
head

(Aluminum)

Casting
(Aluminum)

Cassette
(Steel)

+

+Tin 
Prefilter:
1.5 mm

Isocenter-detector-distance
550 mm

Scaling (size)
1.0

Profile
(Aluminum)

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Test Performance for Different Inputs

DSE

DSE

DSE

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Results
Scatter estimates for simulated testing data

Scatter ground 

truth (GT)
Primary 

intensity

|Kernel - GT| 

/ GT 

|Hybrid - GT| 

/ GT

|DSE - GT| 

/ GT

C = 0%, W = 50%C = 0.5, W = 1.0 C = 0.015, W = 0.020 C = 0%, W = 50%C = 0%, W = 50%

Model

13%
mean 

absolute
percentage 

error
over
3600

projections

7%
mean 

absolute
percentage 

error
over
3600

projections

1%
mean 

absolute
percentage 

error
over
3600

projections
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Scatter free  (GT) Kernel-based - GT Hybrid - GT DSE - GTNo correction No correction - GT

C/W = 0.00 / 0.03 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.08 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.03 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.08 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.03 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.08 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.03 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.08 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.07 / 0.03 mm-1

C/W = 0.035 / 0.015 mm-1

C/W = 0.035 / 0.015 mm-1

C/W = 0.135 / 0.08 mm-1

C/W = 0.035 / 0.015 mm-1

C/W = 0.07 / 0.03 mm-1

C/W = 0.035 / 0.015 mm-1

C/W = 0.035 / 0.015 mm-1

C/W = 0.135 / 0.08 mm-1

C/W = 0.035 / 0.015 mm-1

Results
CT reconstructions of scatter corrected testing data
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Application to Measured Data

• Measurement at DKFZ table-top CT

• Tomography of aluminum profile

• 720 projections, 360°

• 110 kV Hamamatsu micro-focus tube

• Varian flat detector 

Training Testing

Components

Detector elements 768×768 768×768

Source-detector distance 580 mm 580 mm

Source-isocenter distance 100 mm, 110 mm, 120 mm 110 mm

Tilt angle 0°, 30°, 60°, 90° 0°

Tube voltage 100 kV, 110 kV, 120 kV 110 kV

Copper prefilter 1.0 mm, 2.0 mm 2.0 mm

Scaling 1.0 -

Number of projections 8208 720
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Results
Performance of DSE for measured data

Reconstructions

MC scatter |Kernel-based - MC| / MC |Hybrid - MC| / MC |DSE - GT| / MC

C = 0%, W = 50%C = 0%, W = 50%C = 0.04, W = 0.06 C = 0%, W = 50%

Component

Projection data

Monte Carlo  (GT) Kernel-based Hybrid DSENo correction
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12.6% MAPE
(720 projections)

5.4% MAPE
(720 projections)

2.5% MAPE
(720 projections)
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Truncated DSE

FOM

FOM

Ground  truth Uncorrected MC-corrected DSE

40 × 40 cm2 

flat detector

40 × 40 cm2 

flat detector

To learn why MC fails at truncated data and what significant efforts are necessary to cope with that situation see [Kachelrieß et al. 
Effect of detruncation on the accuracy of MC-based scatter estimation in truncated CBCT. Med. Phys. 45(8):3574-3590, August 2018].

A simple detruncation was applied to the rawdata before reconstruction. Images were clipped to the FOM before display. C = -200 HU, W = 1000 HU.

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Does DSE Generalize
to Different Anatomical Regions? 

• Simulation parameters:
– 7 head and 14 thorax/abdomen clinical CT data sets

– Apply affine transforms to obtain 28 volumes for each region

– Regions: head, thorax and abdomen

– Tube voltage: 120 kV, 140 kV.

– Prior volumes: 28 head phantoms

– Simulate 45 projections over 360° for each volume and voltage

– Number of z-positions: 1 for head, 4 for thorax and abdomen

– Data augmentation for head: vertical & horizontal flipping

– Total number of projections: 2 × 28 × 45 × 2 × 2 = 10080

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Does DSE Generalize
to Different Anatomical Regions? 

• DSE:

• KSE (“trained” using the same data):

Values shown are the mean absolute percentage errors (MAPEs) of the testing data.
Note that thorax and head suffer from truncation due to the small size of the 40×30 cm flat detector.

DSE Head Thorax Abdomen

Head 1.2 21.1 32.7

Thorax 8.8 1.5 9.1

Abdomen 11.9 10.9 1.3

All data 1.8 1.4 1.4

KSE Head Thorax Abdomen

Head 14.5 26.8 32.5

Thorax 16.2 18.5 19.4

Abdomen 16.8 22.1 17.8

All data 14.9 20.5 19.3

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



108

Results

Values shown are the mean absolute percentage errors (MAPEs) of the testing data.
Note that thorax and head suffer from truncation due to the small size of the 40×30 cm flat detector.
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Pep image
Scatter 

ground truth (GT)
(KSE - GT) / GT (HSE - GT) / GT (DSE - GT) / GT

C = 0.2, W = 0.35 C = 0.015, W = 0.02 C = 0%, W = 50% C = 0%, W = 50% C = 0%, W = 50%
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Thorax, 140 kV,

22 cm FOM

Thorax, 140 kV, 

40 cm FOM

(shifted detector)

Abdomen, 140 kV,

22 cm FOM

Abdomen, 140 kV, 

40 cm FOM

(shifted detector)

C = 0 HU

W = 700 HU

Ground truth No correction KSE HSE DSE

Head, 140 kV,

22 cm FOM
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Thorax, 140 kV,

22 cm FOM

Thorax, 140 kV, 

40 cm FOM

(shifted detector)

Abdomen, 140 kV,

22 cm FOM

Abdomen, 140 kV, 

40 cm FOM

(shifted detector)

C = 0 HU

W = 700 HU

Ground truth No correction KSE HSE DSE

Head, 140 kV,

22 cm FOM
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J. Erath, T. Vöth, J. Maier, E. Fournié, M. Petersilka, K. Stierstorfer, and M. Kachelrieß. Deep learning-based 
forward and cross-scatter correction in dual source CT. Med. Phys. 48:4824–4842, July 2021.

Siemens SOMATOM Force 
dual source cone-beam spiral CT

Scatter in Dual Source CT (DSCT)

Ground Truth Forward Scatter Cross-Scatter Forward 
+ Cross-Scatter

C = 40 HU, W = 300 HU, with 2D anti-scatter grid
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z

primary intensity profile

imaging detector rows
scatter 
detector

row

scatter 
detector

row

finite size focal spot

pre patient collimation

Measurement-Based 
Scatter Estimation

J. Erath, T. Vöth, J. Maier, E. Fournié, M. Petersilka, K. Stierstorfer, and M. Kachelrieß. Deep learning-based 
forward and cross-scatter correction in dual source CT. Med. Phys. 48:4824–4842, July 2021.
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Cross-DSE
Uncorrected xDSE (2D, xSSE)

MAE = 10.6 HUMAE = 4.9 HUMAE = 42.6 HU

Images C = 40 HU, W = 300 HU, difference images C = 0 HU, W = 300 HU 

Ground Truth

xDSE (2D, xSSE) maps 
primary + forward scatter + cross-scatter + cross-scatter approximation   → cross-scatter

Measurement-based

J. Erath, T. Vöth, J. Maier, E. Fournié, M. Petersilka, K. Stierstorfer, and M. Kachelrieß. Deep learning-based 
forward and cross-scatter correction in dual source CT. Med. Phys. 48:4824–4842, July 2021.
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Conclusions on DSE

• DSE needs about 3 ms per CT and 10 ms per CBCT projection (as of 2020).

• DSE is a fast and accurate alternative to MC simulations.

• DSE outperforms kernel-based approaches in terms of accuracy and speed.

• Facts:
– DSE can estimate scatter from a single (!) x-ray image. 

– DSE can accurately estimate scatter from a primary+scatter image.

– DSE generalizes to all anatomical regions.

– DSE works for geometries and beam qualities differing from training.

– DSE may outperform MC even though DSE is trained with MC.

• DSE is not restricted to reproducing MC scatter estimates. 

• DSE can rather be trained with any other scatter estimate, including those 
based on measurements.

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Thank You!

• This presentation will soon be available at www.dkfz.de/ct.

• Job opportunities through DKFZ’s international PhD or Postdoctoral 
Fellowship programs (marc.kachelriess@dkfz.de). 

• Parts of the reconstruction software were provided by 
RayConStruct® GmbH, Nürnberg, Germany.
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