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Scatter Artifacts

« Measurement = Primary + Scatter

* Interaction processes
— C = Compton scatter
— R = Rayleigh scatter
— P = photo effect




Scatter Artifact Reduction

« Several algorithmic methods found in the literature:
— Monte Carlo-based (slow but good)
— Convolution-based (fast, but not accurate)
— Simple subtraction methods (even faster, but less accurate)
— Deep scatter estimation (DSE, fast and accurate)

 Hardware-based methods
— Anti scatter grid
— Beam blockers
— Primary modulators
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To Grid or not to Grid?

« A common misbelieve is that a good or perfect scatter reduction
software can be used instead of using anti scatter grids.

* This is wrong, as will be shown in the next slices.
* Facts:

— Anti scatter grids are beneficial iff the scatter-to-primary ratio (SPR) exceeds a certain
threshold, i.e. for large cross-sections.

— Scatter reduction software is always beneficial, with or without anti scatter grid.
— Noise reduction software is always beneficial, with or without anti scatter grid.




TSI

. S4S TP IP
Cover thickness: t, e.g. 0.2 mm Al or 0.25 mm C ; : ;
Height of strips: h Primary intensity: I
Thickness of strips: d, e.g. 0.04 mm Pb Scatter intensity: /s
Gap between strips: D, e.g Al or C-fiber Primary transmission: Tp <1, e.g. 75%
Grid ratio: hiD, e.g. 8 or 15 Scatter transmission: Tg >0, e.g. 30%
Grid frequency: 1/(D+d), e.g. 40/cm ;
Geometrical efficiency: D/(D+d) No grid: Tp = Ts = 1
Height of interspace material: H Ideal grid: T, =1, Ts=0

Drawn to grid ratio 4:1 and infinite focus distance.



To Grid or not to Grid?

« Only primary counts for the signal, but primary and scatter count for
noise. Thus, Tplp

SNR =
VIplp + Tsls
 SNR improvement factor (SNR with grid / SNR no grid)
ViIp + I
VIplp + Tslg
 The case Tg = 0 is instructive and yields
SNRy¢ < v/Tpv1 + SPR

with SPR being the scatter-to-primary ratio.
» Use a grid only for cases with SNR; > 1.

« Scatter correction and noise reduction algorithms are to be used
complementary and not as an alternative to grids!

SNRif = Tp




Detector Technology
Clinical CT Detector Module Flat Detector (e.g. 40 x 30 cm)

Differences in:
» Absorption efficiency
+ Afterglow
* Anti scatter grid
Siemens ' Y Z Dynamic range
= « Cross-talk
* Framerate



Scatter estimation with the help of a pre patient modulator

PRIMARY MODULATOR



Existing Scatter Correction Methods

Remove or prevent scattered radiation
— anti scatter grid, slit scan, large detector distance, ...

Compute scatter to subtract it
— convolution-based, Monte Carlo-based, ...

Measure scatter distribution and subtract it
— collimator shadow, beam blockers, primary modulators, ...

Literature:

— E.-P. Ruhrnschopf and K. Klingenbeck, “A general framework and review of scatter
correction methods in x-ray cone—beam computerized tomography. Part 1: Scatter
compensation approaches,” Med. Phys., vol. 38, pp. 4296—4311, July 2011.

— E.-P. Ruhrnschopf and K. Klingenbeck, “A general framework and review of scatter
correction methods in x-ray cone beam CT. Part 2: Scatter estimation approaches,”
Med. Phys., vol. 38, pp. 5186-5199, Sept. 2011.



Primary Modulation-based Scatter Estimation
(PMSE)

 Ildea: Insert a high frequency modulation
pattern between the source and the object
scanned

* Rationale: The primary intensity is
modulated. The scatter is created in the
object and only consists of low frequency
components.

 Method: Estimate low frequency primary
without scatter by Fourier filtering
techniques

+ ‘ </Sh|fted primary

\ Scatter + primary

L. Zhu, R. N. Bennett, and R. Fahrig, “Scatter correction method for x—ray CT using primary modulation:

Theory and preliminary results,” IEEE Transactions on Medical Imaging, vol. 25, pp. 1573-1587, Dec. 2006.



Primary Modulation-based Scatter Estimation
(PMSE)

Key hypothesis: Low-frequency components dominate the scatter
distribution even if high-frequency components are present in the
incident x-ray intensity distribution.

The measurement with a modulator can
be expressed in Fourier space with:

o 1l+a -—o .
P'(w)= TP(_(U) + TP(w - 1)+ S(w), (1)

where P and § denote the Fourier transforms of primary and

scatter, respectively, and @ € [—7, 7] X [—r, 7] is the 2D co-
ordinate of (w,,w,) in the Fourier domain. Parameter a
e (0,1) is the transmission factor of the modulator blocker,

Fig. 3. Cumeptual illustration of the primary and scatter distributions i in the Scatter S can be eStImated by

Fourier doma w1th the pmn ary modulatol in plaue The snlld lme indica

o Ita N
- Se(@) =P'(w)H(w) - ——P' (0w — m)H(w).
nainly wnuennated in the ln\\ nequenu region berole and | —a
ation; the center 1 assed by the dotted line in-
dicates the support of the low p 3.3 scatter correction
algorithm proposed in Sectio I-D; the shaded reg_ion indicates the support of

the high-pass filter used in Step 3.4. With H(w) being ad |OW-paSS fi Iter

L. Zhu, R. N. Bennett, and R. Fahrig, “Scatter correction method for x—ray CT using primary modulation:

Theory and preliminary results,” IEEE Transactions on Medical Imaging, vol. 25, pp. 1573-1587, Dec. 2006.



Primary Modulation-based Scatter Estimation
(PMSE)

« Advantages:
— Non-destructive measurement of the scatter distribution
— Works with high accuracy on laboratory setups
— Corrected projection data can be used for projective imaging (fluoroscopy) or for
tomographic reconstruction
 Drawbacks:

— Sensitive to non-linearities due to polychromaticity of x-rays. Ring artifacts are
introduced’. Can be resolved using ECCPZ.

— Requires exact rectangular pattern on the detector. Very sensitive to non-idealities of
the projected modulation pattern (blurring, distortion, manufacturing errors of the
modulator). Can be resolved using iPMSE (this work).

TH. Gao, L. Zhu, and R. Fahrig. Modulator design for x-ray scatter correction using primary modulation: Material selection. Med. Phys. 37:4029-4037, 2010. dkfz
39:825-831 @

2R. Grimmer, R. Fahrig, W. Hinshaw, H. Gao, and M. KachelrieB. Empirical cupping correction for CT scanners with primary modulation (ECCP). Med. Phys.



Aim

Create a robust scatter estimation method which is able to estimate the
scatter distribution with high accuracy using a modulator with an
arbitrary high frequency pattern.
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“Ideal” modulator Non-ideal modulator
(projection of a copper modulator) (projection of the erbium modulator)
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Modulation Process
in the Rawdata Domain

/ Primary intensity

* Measured data: cm = Mece, + ¢
\ Scatter intensity

Measured intensity Modulation pattern

« Solving for the

. . . —1
primary intensity: c, =M (cm —cs)
- Error of primary et = M (em — )
estimate: P
e+ MG )
The modulation pattern remains visible as long . T

as the scatter estimation error is not zero.

L. Ritschl, R. Fahrig, M. Knaup, J. Maier, and M. KachelrieR. Robust primary modulation-based scatter estimation for

cone-beam CT. Med. Phys. 42(1):469-478, January 2015.



to

IS Sensitive

Is there a cost function which

the modulation pattern?

“em —1):

Regard the image sequence c,(t) =

469-478, January 2015.

cone-beam CT. Med. Phys. 42(1)
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Optimization Problem

- Subjectto H - cS*' = ( solve:

C(eg) =V - =V - M (em — ™)l

S

« Assumption:

In a sufficiently small and sufficiently
large sub image the constraint can be
satisfied by assuming c_ = const.

Measurement

« Solution:

Solve cost function for each possible sub
image separately.

Scatter estimate

L. Ritschl, R. Fahrig, M. Knaup, J. Maier, and M. KachelrieR. Robust primary modulation-based scatter estimation for

cone-beam CT. Med. Phys. 42(1):469-478, January 2015.



Measured Intensity

L. Ritschl, R. Fahrig, M. Knaup, J. Maier, and M. KachelrieB. Robust primary modulation-based scatter estimation for

cone-beam CT. Med. Phys. 42(1):469-478, January 2015.



IPMSE Estimation

J

L. Ritschl, R. Fahrig, M. Knaup, J. Maier, and M. KachelrieB. Robust primary modulation-based scatter estimation for
cone-beam CT. Med. Phys. 42(1):469-478, January 2015.




Cadaver Head and Lung Phantom
N\“ : EEEEE::%X

_

« Scan parameters
— 80 kV
— 30 mA
— 13 ms pulse length
— 625 projections of 360°
— 244 mAs

* No antiscatter grid

 Modulator
— Material: Erbium
— Thickness: 0.0254 mm
— Pattern size: 0.457 mm

« ECCP' preprocessing
 IPMSE scatter removal
* FDK reconstruction

s’
l':'

'R. Grimmer, R. Fahrig, W. Hinshaw, H. Gao, and M. KachelrieR. Empirical cupping correction for CT scanners with primary modulation dkfz
o

(ECCP). Med. Phys. 39:825-831, 2012.



Cadaver Head Axial Slice

Slit scan Uncorrected

C =200 HU, W=2800 HU

L. Ritschl, R. Fahrig, M. Knaup, J. Maier, and M. KachelrieB. Robust primary modulation-based scatter estimation for

cone-beam CT. Med. Phys. 42(1):469-478, January 2015.



Slitscan

Uncorrected

£
i A
Coronal Sagittal C =0 HU, W=1000 HU

L. Ritschl, R. Fahrig, M. Knaup, J. Maier, and M. KachelrieB. Robust primary modulation-based scatter estimation for

cone-beam CT. Med. Phys. 42(1):469-478, January 2015.



Discussion

* Highly accurate scatter estimation and removal is also possible
using irregular modulation patterns.

* Non-idealities of the modulation pattern and penumbra effects are
optimally handled with iPMSE.

 The combination ECCP and iPMSE guarantees quantitative flat
detector images without scatter artifacts.

« Accurate scatter correction opens the field of quantitative flat
detector CT.

L. Ritschl, R. Fahrig, M. Knaup, J. Maier, and M. KachelrieR. Robust primary modulation-based scatter estimation for

cone-beam CT. Med. Phys. 42(1):469-478, January 2015.



The gold standard for scatter estimation

MONTE CARLO



Monte Carlo Scatter Estimation

« Simulation of photon trajectories according to physical interaction
probabilities.

« Simulating a large number of photon trajectories well approximates
the actual scatter distribution.

Scatter distribution of an Complete scatter
incident needle beam distribution
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Monte Carlo Simulation of Radiation Transport

* The quantity Q of interest could be the number of photons reaching
the detector or the energy deposited in the detector.

EQ — / Qp(Q) dQ.

 However, the probability density p(Q) is usually unknown.

« Simulation of individual photon tracks (= random walk from source
to detector) yields a practical method to sample Q;

Bounding box (BB)

X-ray source ; A B

,E, F

Detector

for(Number of tracks)
A. Sample x-ray energy
B. Sample initial flight direction
while(Energy > 0 && x-ray inside BB)
C. Sample path length
D. Sample interaction effect
E. Sample flight direction
F. Update energy




Sampling of the X-Ray Energy

* The spectral distribution of x-rays w(E) can be determined using
theoretical models (e.g. the model of Tucker?).

 Normalizing the x-ray spectrum to unit area allows to interpret it as
probability density function: w(E)

E) =
« Sampling from cumulative distribution, e.g. with the upsampling method.

| =——100kV Tucker spectrum (scaled pdf) Original pdf

Sampling using upsampling method (factor 1)
0. | — Cumulative probability

40 60

Energy [/ kev Energy / keV

Tucker D. M., Barnes G.T., Chakraborty D.P. (1991), Semiempirical model for generating tungsten target x-ray spectra. Med. Phys. 18, 211-218. dkfz.



Sampling of the Initial Flight Direction

 Assuming an isotropic emission of the x-ray source, the probability
density function of the azimuthal angle ¢ and the polar angle ¢ are
given as

* The inverse transform method yields
0=m-&
=27 &

* The initial flight direction is given by
ty =sin6 - cosy
ty =sind - singp

t, = cosf



Path Length Sampling

* The probability pr(r)dr of an interaction between rand r + dris
|
D)

_ e_ f()r ;L(T,)dT" _ e_ O?"err ,LL(’I“,)dT"

pr(r)dr VIGETIGEN2)

— e~ Jo u(r)dr' (1 _ o= ST ur)dr'y
_ o= Jo n(r")dr' (1 — e=#(r)dr)
= ¢~ Jo A (1) dr
 The cumulative probability distribution is
Pr(r) =1— ¢ Jod n)
* The path length r is sampled using the inverse transform method:

(@) L [ ()



Path Length Sampling

Woodcock sampling

- Numerical inversion of In(¢) = — / dr'u(r") might be computationally
expensive. 0

« Woodcock sampling is a faster alternative:

1. Sample path length according to maximum attenuation (for a single material there is an
analytical inverse)

1

r=r— -~ In(§)

2. Sample uniform random number &:

if (u(r)/tmax < &) goto 1.

else return r



Path Length Sampling

Woodcock sampling

- Numerical inversion of In(¢) = — / dr'u(r") might be computationally
0

expensive.
 Woodcock sampling is a faster alternative:

1. Sample path length according to maximum attenuation (for a single material there is an

analytical inverse)

Regular sampling

o 0

2. Sample uniform random number &:

if ((7)/pmax < &) goto 1.

else return r

- - =Woodcock sampling

r=r1r—
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Sampling of Interaction Effect

« Considering x-ray eneries used for medical imaging, there are three relevant
interaction effects: photoelectric absorption (P), Compton scattering (C) and
Rayleigh scattering (R).

 Interaction probabilities:

pp = Hp Po — HC PR = HR
pp + pc + pr’ pp + pc + pr’ pup + pe + pURr

« Cumulative probability:
Pl ={pp, pp-+pc. pp+pc+pr}
« Sampling:
— Sample uniform random number &:
if (¢ < P[0]) : Photo effect
else if (£ < P[1]) : Compton effect
else if (¢ < P[2]) : Rayleigh effect

1Attenuation coefficients can be taken from EPDL library: Cullen D.E., Hubbell J.H., Kissel L. (1997), EPDL97: The Evaluated Photon Data Library, '97 version.

dkfz.



Sampling of Flight Direction

* The polar angle of the flight direction can be sampled using
tabulated values of differential cross-sections’

 Normalization to unit area allows to interpret the cross-section as
probability density function )
27 (9
p(0) = dgd(a)
Jdo 55 (6)

« Sampling using inverse transform method

— Compton differential cross section @30 keV ——Compton differential cross section @60 keV ——Rayleigh differential cross section @30 keV ——Rayleigh differential cross section @60 keV

Compton differential cross section @90 keV Compton differential cross section @120 keV Rayleigh differential cross section @90 keV Rayleigh differential cross section @120 keV
5.00E-03 6.00E-02

4.50E-03

5.00E-02
4.00E-03
3.50E-03

4.00E-02 —

3.00E-02

Probability

A 2.00E-03

1.50E-03 2.00E-02

1.00E-03
1.00E-02

0.00E+00
80 100

Scatter angle / °

1Attenuation coefficients can be taken from EPDL library: Cullen D.E., Hubbell J.H., Kissel L. (1997), EPDL97: The Evaluated Photon Data Library, '97 version. dkfz.



Updating the X-Ray Energy

After any interaction, the energy E of the x-ray has to be updated
( E > E’) according to the interaction effect.

Photoelectric effect

— X-ray is absorbed: /3 =0 (neglecting K-escape)
« Compton scattering
— Klein-Nishina: B E

T 14 B (1 — cos @)

MeC2
where @ is the scatter angle with respect to the flight direction.

Rayleigh scattering
— Coherent scattering: E = F



Variance Reduction

Biased sampling

- Sample from a biased probability density function Pbiased(q)

« Assign a weight wnias to each particle to correct for the biased
sampling:

Whias * pbiased(Q) — preal(Q)
 The MC estimate is given as:

1 N 1 N
Q — W Zn: Gn.,real = W Zn: Wn,bias * dn,biased




Variance Reduction

Biased sampling

- Sample from a biased probability density function Pbiased(q)

« Assign a weight wnias to each particle to correct for the biased
sampling:
Whias * pbiased(Q) — preal(Q)
 The MC estimate is given as:

N
_ 1 1
= — Z Qn.real = == Z Wn bias * dn,biased
N N &

Example: sampling of initial flight direction of an isotropic emitter

= Real sampling: Sampling of a random angle » € [0 : 27]

= Biased sampling: neglect all x-rays that are blocked by collimator
- Sample ¢ € [0: d

1

" X-ray detector, Real pdf:  preal(p) = o
-ra\\y /I Collimator 7’['1
Biased pdf: ppiased () = »

a

X-ray source\l
It

Weight: Whias =




Variance Reduction

Biased sampling

- Sample from a biased probability density function Pbiased(q)

« Assign a weight wnias to each particle to correct for the biased
sampling:
Whias * pbiased(Q) — preal(Q)
 The MC estimate is given as:

1 N 1 N
Q — W Zn: Gn.,real = W Zn: Wn,bias * dn,biased

Example: sampling of the interaction effect

= Real sampling: sampling of photo effect, Compton and Rayleigh scatter.

= Biased sampling: neglect photo effect since absorbed photons do not
contribute to the scatter distribution

Hi
= * Pi, real =
X-ray detector, Real pdf el = ot in
u.
Biased pdf: Pi, biased =
X-ray source S Ho TR
y ~.. e+ g

Absorption ) Weight:  wbias =

pp + po + UR




Variance Reduction

Biased sampling

- Sample from a biased probability density function Pbiased(q)

« Assign a weight wnias to each particle to correct for the biased
sampling:

Whias * pbiased(Q) — preal(Q)
 The MC estimate is given as:

1 N 1 N
Q — W Zn: Gn.,real = W Zn: Wn,bias * dn,biased

Example: sampling of path lengths

= Real sampling: sampling from exponential distribution.

= Biased sampling: sampling from uniform distribution to increase
number of interactions at higher depth

ol = Real pdf Real pdf preal(T) =K e "
0,015 \—Biased pdf

0,01 - . 1
0,005 A Biased pdf Phbiased (7") =

"'max — Tmin

(0

0 20 40 60 80 100 . — i
Welght: wbiaS(T) = (Tmax - Tmin)ﬂ‘ o
Depth / mm



Variance Reduction

Particle splitting / Russian roulette

» Particle splitting
— Split photon into N photons if it moves towards a region of interest (e.g. to the detector).

w
— Assign a weight of wgp1it = WO to each split photon.

 Russian roulette

— Kill a photon with probability K if it moves away from the region of interest (i.e. to the
detector).

if the photon survives the Russian roulette.

— Assign a weight of wrgr = 1




Variance Reduction

Forced Detection

« X-ray may leave the volume without hitting the detector > Simulated
track does not contribute to the

« Score the probability of hitting the detector at every interaction point
* Apply a weight that corresponds to this probability

X-ray detector,

X-ray leaves volume ~7

X-ray source




Literature
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Fast, but not very accurate

KERNEL-BASED SCATTER ESTIMATION



Kernel-Based Scatter Estimation

2D scatter kernels 3D scatter kernels
(low complexity) (high complexity)

D)
\ ]
object

source
source

scatter ™
object f

S(u) = /dgr T(I(r))Ke(u,r)

 The intensities (typically primary plus scatter) |, either at the detector or in the volume, undergo a
pointwise transfer function T, also known as the scatter potential. Then they are convolved with
the scatter kernel.

« The scatter kernels K may be shift variant (general case) or shift invariant (special case) and they
depend on many parameters c, such as the tube voltage, projection angle, object size and
composition, scatter geometry, anti scater grids, ...



2D (Beam Spread) Scatter Kernels

 Typical scatter potentials pep
T(I) = Io
T(I) =1
1 1
T()=——1 — e
(=l =pe |
1 10 p

« Typical scatter kernels
— Shift invariant scatter kernels, e.g. Gaussian, sum of Gaussians, exponentials ...
— Shift variant kernels
» Kernels as a function of the water equivalent thickness at both points
» Kernels can be Gaussian, exponential, sums thereof, ...
— Asymmetric kernels



PEP
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PEP







, PEP forCT




PEP for PET

a(rg) (p(ra) + p(re) + p(re))e P = a(rg) pe™



PEP for PET




HYBRID SCATTER CORRECTION
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Abstract

The purpose of this study was to develop and evaluate the hybrid scatter
correction algorithm (HSC) for CT imaging. Therefore. two established ways
to perform scatter correction, i.e. physical scatter correction based on Monte

dkfz.



Scatter Estimation

Monte Carlo-based

Measured intensities (primary plus scatter)

l, Reconstruction

Simulation of physical photon paths
based on density and material
distribution

Physical effects:
Photo effect
Compton scattering
Rayleigh scattering

\4

Monte Carlo-based scatter estimate /M°

Patient-specific, many computations

Convolution-based

Measured intensities (primary plus scatter)

7CB _ Y
I€B(c) = ®(Ips, ) * K(c)

Convolution of the
scatter potential ® with
scatter kernel K

l,s: Primary plus scatter
intensity

c (vector): Open
coefficients

We used the convolution-
based method of
Ohnesorge et al.*

\4

Convolution-based scatter estimate fSCH

Not patient-specific, few computations

* Ohnesorge et al., Efficient scatter correction algorithm for third and fourth generation CT scanners, Eur. Radiol. 9:563-569, 1999.

dkfz.



Hybrid Scatter Correction

Measured intensities (Primary plus scatter)

- N % __

Uncorrected Reconstruct initial Corrected
uncorrected CT
image

. N € Calibrate the open coefficients in — o . N
a 3 the convolution-based model 0 ) 0

A i — aro FMC/.\ _ 7CB 2 N e ?

* c = arg min dx L (x) — 157 (x, ) -
c
Coarse Monte Carlo Detector
simulation

rl _ A

Subtract scatter

Compute scatter estimate

- < from measured
with the co::(r;:jl:ltlon based <€¢— intensities and
reconstruct
. corrected image
Convolution-based scatter estimate /" 1‘

- -

M. Baer and M. KachelrieB. Hybrid scatter correction for CT imaging. Phys. Med. Biol. 57(21):6849-6867, October 2012.



Number of Calibration Steps

Image Diff. to Reference Image Diff. to Reference

Reference

Corrected
NcaI = 1

Uncorrected

Corrected
N., =16

Monochromatic simulation study in clinical CT
geometry

Scatter simulation by Monte Carlo

Corrected
N., =All

M. Baer and M. KachelrieB. Hybrid scatter correction for CT imaging. Phys. Med. Biol. 57(21):6849-6867, October 2012.



Number of Photons

Image Diff. to Reference Image Diff. to Reference

®

o T £

[5) o

c % zZ

2 95

© o

(14 O =
o

-

©

< o

(8]

o 2

5 :

3 =

c o

=) o

Monochromatic simulation study in clinical CT
geometry
Scatter simulation by Monte Carlo

0.001 Npp, re¢ Npp =0.01 Npy, o

Nehrer - Photon number for the low noise reference
Monte Carlo simulation used for the uncorrected image

Nca =16

Corrected

Ph =

N

cal

M. Baer and M. KachelrieB. Hybrid scatter correction for CT imaging. Phys. Med. Biol. 57(21):6849-6867, October 2012. dkfz.



Scatter Correction Results

Measurements in cone-beam CT geometry

Reference image:
— Monte Carlo scatter correction and EBHC for beam hardening.

Hybrid scatter correction (HSC):

— Monte Carlo simulation for only 16 projections and 100 times
less photons than in the reference Monte Carlo correction.

HSC+EBHC:

— Here we additionally applied the empirical beam-hardening
correction (EBHC).

Uncorrected Reference

HSC

HSC + EBHC

Image

Diff to Reference

W= 50 HU

“"W = 400 HU




Scatter is Smooth
only in Intensity Domain!

Primary Scatter Primary + Scatter
Intensity : N _
Domain : . r -
-~
‘ log
Log -
Domain // ﬁ + =
{ recon { recon { recon

Image L%/ ] G
. + ~ «
Domain ‘\ e £ -
o L'
\ g




Intensity
Domain

Log
Domain

Image
Domain

Scatter is Smooth
only in Intensity Domain!

Primary Scatter Primary + Scatter
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Scatter is Smooth
only in Intensity Domain!
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Further Reading

 Wei Zhao, Don Vernekohl, Jun Zhu, Luyao Wang, and Lei Xing. A
model-based scatter artifacts correction for cone beam CT. Medical
Physics 43 (1736), March2016.

* Ernst-Peter Ruhrnschopf and Klaus Klingenbeck. A General
Framework and Review of Scatter Correction Methods in X-Ray
Cone-Beam Computerized Tomography. Part 1: Scatter
Compensation Approaches. Med. Phys. 38(7):4296-4311, July 2011.

* Ernst-Peter Ruhrnschopf and Klaus Klingenbeck. A General
Framework and Review of Scatter Correction Methods in X-Ray
Cone-Beam Computerized Tomography. Part 2: Scatter Estimation
Approaches. Med. Phys. 38(9):5186-5199, September 2011.



Real-time scatter estimation with highest accuracy

DEEP SCATTER ESTIMATION (DSE)



Motivation

- X-ray scatter is a major cause of artifacts in CT and CBCT.

« Appropriate scatter correction is crucial to maintain the diagnostic
value of the CT examination.

Primary intensity
B

‘ CT reconstruction
>

d-) scatter

&

CT reconstruction

C=0HU, W=2800 HU




Scatter Correction

Scatter suppression Scatter estimation

« Anti-scatter grids * Monte Carlo simulation

« Collimators  Kernel-based approaches
° ...  Boltzmann transport

* Primary modulation
e Beam blockers

Anti-scatter grid
\ Measured intensity Scatter estimate

1--

2




Monte Carlo Scatter Estimation

« Simulation of photon trajectories according to physical interaction
probabilities.

« Simulating a large number of photr= - urs approximates

the actual scatter dist~- - 10 hO

sGiiplete scatter

el tomog"aph‘ distribution




Deep Scatter Estimation

Network architecture & scatter estimation framework

Output:
Input: ] 384 x 256 x 4 scatter estimate

s —)
ecO“d
| jph'\c data Set

E A to 1

ST e tomo9'

Upsampling
of operator Y to original
T(p)=pe P O size
48 x 32 x 160
24 x 16 x 320
O- 3 x 3 Convolution, RelLU
D ®» 1x1 Convolution, ReLU
O 2 x 2 Max. Pooling
2 x 2 Upsampling
6 x 4 x 960 -O- Depth Concatenate

Projection data

J. Maier, M. KachelrieB et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.

J. Maier, M. KachelrieB et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Training the DSE Network

CBCT Setup Primary intensity =~ MC scatter simulation Poisson\“rilxtv)'

®» Input

Desired output

« Simulation of 6000 projections using
different heads and acquisition parameters
(80 kV, ..., 140 kV in steps of 20 kV).

 Splitting into 80% training and 20%
validation data.

* Mean S/P=0.9

« 90th percentile S/P = 1.32

4.2 * Training minimizes MSE pixel-wise loss on

' aGeForce GTX 1080 for 80 epochs.

. Maier, M. KachelrieB et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.

J. Maier, M. KachelrieB et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Testing of the DSE Network for Simulated Data
(at 120 kV)

CBCT Setup Primary intensity MC scatter simulation Poisson noﬁise

L
o
| 3

Ground truth

B Input

« Application of the DSE network to predict scatter for
simulated data of a head (different from training data).

[
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J. Maier, M. KachelrieB et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.

J. Maier, M. KachelrieB et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Training Performance for Different Inputs

T(p)=eP
(p) 1,00E-04
—Training loss, T(p) = exp(-p)
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Validation Performance for Different Inputs

T(p)=e?
(p ) < 1,00E-04 -
—\/alidation loss, T(p) = exp(-p)
o Validation loss, T(p) = p
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J. Maier, M. KachelrieB et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.

J. Maier, M. KachelrieB et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Ref 1: Kernel-Based Scatter Estimation

 Kernel-based scatter estimation’:

— Estimation of scatter by a convolution of the scatter source term T(p) with a scatter
propagation kernel G(u, c):

IS, est (’u,) — (CO . p(u) 5 ep('u»)) * (Z e*Cl (Uélicz)z : Z eCS(UéziC4)2)

l ' AN i
T(p)(u) Glu, )
Open Open
parameters: ’ parameters:
Co C1,C2,C3,C4

{ei} =argmin} ) (I, est (0, {ei}) = Li(n,w)|3,

!

Samples of the Scatter estimate MC scatter simulation

training data set

Detector
coordinate

1B. Ohnesorge, T. Flohr, K. Klingenbeck-Regn: Efficient object scatter correction algorithm for third and fourth generation CT scanners. Eur. Radiol. 9, 563-569 (1999). dkfz.



Ref 2: Hybrid Scatter Estimation

« Hybrid scatter estimation?:

— Estimation of scatter by a convolution of the scatter source term T(p) with a scatter
propagation kernel G(u, c):

IS, est (’u,) — (CO . p(u) 5 ep('u»)) * (Z e*Cl (Uélicz)z : Z eCS(UéziC4)2)

l ' AN i
T(p)(u) Glu, )
Open Open
parameters: ’ parameters:
Co C1,C2,C3,C4

{citn = argminz [ s, est(m, w, {¢i}) — Ls(n, u)”%v

J

Samples of the test Scatter estimate Coarse MC simulation
data set N,
" s " "-.:\. '.

Detector A
coordinate AT e gl
o ,‘ Stk 4

2M. Baer, M. KachelrieB: Hybrid scatter correction for CT imaging. Phys. Med. Biol. 57, 6849-6867 (2012).



Results on Simulated Projection Data

Primary Scatter ground (Kernel — GT) (Hybrid - GT) (DSE - GT)
intensity truth (GT) / GT | GT |GT
View #1 . :
ean ear 3 ear
olute z absolute
percenta e erceNiase - percentage
CITo) error
: Ve over
View #2 aII all all
projections jecti project]o@
View #3 l ‘
e ‘ ]
View #5
C=0%, W =50% C=0% W=50% |

DSE trained to estimate scatter from primary plus scatter: High accuracy



Results on Simulated Projection Data

Primary Scatter ground (Kernel — GT) (Hybrid - GT) (DSE - GT)
intensity truth (GT) / GT | GT | GT
%
0
View #1 6.4%
mean b mean
absolute absolute absolute
A
percenta e ‘ percentage
error
. over
View #2 aII all
projections projections projections

» s
DSE, in its pr sent form,

sC catter '
needs to S€€
in its inpY ut data ‘
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View #3
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DSE trained to estimate scatter from primary only: Low accuracy



Results on Simulated Projection Data

Primary Scatter ground (Kernel — GT) (Hybrid - GT) (DSE - GT)
intensity truth (GT)
View #1 . 2
! Ed J‘ nean J ’)
2 absolute

percenta e crcentage percentage
error
over
aII z all
projections jecti projections

View #2

).1

View #3

View #4

View #5

C=0%, W= 50%‘ C=0% W= 501-

DSE trained to estimate scatter from primary plus scatter: High accuracy



Reconstructions of Simulated Data

Kernel-Based Hybrid Scatter Deep Scatter
Scatter Estimation Estimation Estimation

Ground Truth No Correction

CT Reconstruction

Difference to ideal
simulation

C=0HU, W=1000 HU

J. Maier, M. KachelrieB et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.

J. Maier, M. KachelrieB et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Testing of the DSE Network for Measured Data
(120 kV)

DKFZ table-top CT

Measurement to be corrected

o q

X-ray source \
J Detector
y .
 Measurement of a head phantom at Ground truth: slit scan
our in-house table-top CT.
_ CoIIimatorI m
- Slit scan measurement serves as o 5]
—_~\ =
ground truth. R I N\
Detector

J. Maier, M. KachelrieB et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.

J. Maier, M. KachelrieB et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Reconstructions of Measured Data

Parameters of the two comparison methods trained
in the same way as those of DSE: same data,
same loss function, same optimization algorithm.

l l DSE

Kernel-Based Hybrid Scatter Deep Scatter
Scatter Estimation Estimation Estimation

Slit Scan No Correction

Difference to slit scan CT Reconstruction

C=0HU, W=1000HU

J. Maier, M. KachelrieB et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.

J. Maier, M. KachelrieB et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Simulation-based

Standard
artifact correction

reconstruction

Simulation-based removal of

* beam hardening artifacts
off-focal radiation artifacts
focal spot blurring artifacts
detector blurring artifacts

scatter artifacts




Simulation Study: Training Data

« Simulation of 16416 projections using different objects and parameter settings to
train the DSE network.

* Training on a GeForce GTX 1080 for 80 epochs using the Keras framework, an
Adam optimizer and a mini-batch size of 16.

Tilt angle: ;
o o o o Isocenter-detector-distance

------------------- 0306090 400 mm, 500 mm, 600 mm
Compressor . v S :
~ (Titanium PN N d@ ﬁ
. alloy) |
. Cylinder "' :
. head . Scaling (S|ze)
i(AIuminum) 0.8, 1 2
. — .
. Casfing i Poisson noise
:(Alumlnum)
: . Tube Tln +
: . Voltage: PR
. Cassette = . 225 KkV, I:rgf::tﬁlr. MC scatter

(Steel) === 275 KV, 2. , mm,

320 kV i

J. Maier, M. KachelrieB et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.

J. Maier, M. KachelrieB et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Simulation Study: Testing Data

« Simulation of a tomography (720 projection / 360°) of five components using
acquisition parameters that differ from the ones used to generate the training data

set.

DR

g

:Compressor

- (Titanium
alloy)

. Cylinder

! head

' (Aluminum)

. Casting
(Aluminum)

Cassette
(Steel)

Tilt angle:

Profile
(Aluminum)

Isocenter-detector-distance
550 mm

Scaling (size)

1.0 D) %
//4*'/4‘l .
Z Poisson noise
Tube -
Tin +
Voltage: PR
250 kV 'Tgf'r';fr': MC scatter

J. Maier, M. KachelrieB et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.

J. Maier, M. KachelrieB et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Test Performance for Different Inputs

T(p)=p-e”

1.00E-05

1.00E-06

1.00E-07

Mean squared error between output and ground truth

1.00E-08

DSE T(p)=e?

Epoch #

J. Maier, M. KachelrieB et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.

J. Maier, M. KachelrieB et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Results

Scatter estimates for simulated testing data

Model Primary Scatter ground  |Kernel - GT| [Hybrid - GT| |IDSE - GT|
intensity truth (GT) | GT | GT | GT

0

1%
mean

absolute

percentage
error
over
%16100)

projections




Results

CT reconstructions of scatter corrected testing data

Scatter free (GT) No correction No correction - GT  Kernel-based - GT Hybrid - GT DSE - GT

C/W =0.035/0.015 mm!

C/W =0.135 / 0.08 mm-L/W =0.135 / 0.08 mm"!

5 [} § p.
@@ ﬁiAj\i .
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Application to Measured Data

Measurement at DKFZ table-top CT
Tomography of aluminum profile | -
720 projections, 360° | QMJ»
110 kV Hamamatsu micro-focus tube =
Varian flat detector

Components

Ex

Detector elements 768x768 768x768
Source-detector distance 580 mm 580 mm
Source-isocenter distance 100 mm, 110 mm, 120 mm 110 mm
Tilt angle 0°, 30°, 60°, 90° 0°
Tube voltage 100 kV, 110 kV, 120 kV 110 kV
Copper prefilter 1.0 mm, 2.0 mm 2.0 mm
Scaling 1.0

Number of projections 8208 720




Results

Performance of DSE for measured data
Projection data

MC scatter |Kernel-based - MC|/ MC  |Hybrid - MC|/ MC IDSE - GT|/ MC

—~ ) I >} = S =0 \ \ -
2.4% MAPE 2.9% NAPE
(720 projections) S)

Component

C=0.04, W =0.06 C=0%, W =50% C=0%, W = 50% C=0%, W =50%
Reconstructions
Monte Carlo (GT) No correction Kernel-based Hybrid DSE

b ) \1

E Ol

=

o

(5]

e

|—

(&

Difference to
Monte Carlo




A simple detruncation was applied to the rawdata before reconstruction. Images were clipped to the FOM before display. C = -200 HU, W = 1000 HU.

Truncated DSE

40 x 40 cm?2
flat detector

Ground truth Uncorrected MC-corrected DSE

40 x 40 cm?
flat detector

To learn why MC fails at truncated data and what significant efforts are necessary to cope with that situation see [KachelrieB et al.
Effect of detruncation on the accuracy of MC-based scatter estimation in truncated CBCT. Med. Phys. 45(8):3574-3590, August 2018].

J. Maier, M. KachelrieB et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.

J. Maier, M. KachelrieB et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Does DSE Generalize
to Different Anatomical Regions?

* Simulation parameters:
— 7 head and 14 thorax/abdomen clinical CT data sets
— Apply affine transforms to obtain 28 volumes for each region
— Regions: head, thorax and abdomen
— Tube voltage: 120 kV, 140 kV.
— Prior volumes: 28 head phantoms
— Simulate 45 projections over 360° for each volume and voltage
— Number of z-positions: 1 for head, 4 for thorax and abdomen
— Data augmentation for head: vertical & horizontal flipping
— Total number of projections: 2 x 28 x 45 x 2 x 2 = 10080

J. Maier, M. KachelrieB et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.

J. Maier, M. KachelrieB et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



 DSE:

Does DSE Generalize

to Different Anatomical Regions?

DSE Head Thorax | Abdomen
Head 1.2 21.1 32.7
Thorax 8.8 1.5 9.1
Abdomen 11.9 10.9 1.3
All data

Values shown are the mean absolute percentage errors (MAPES) of the testing data.
Note that thorax and head suffer from truncation due to the small size of the 40x30 cm flat detector.

 KSE (“trained” using the same data):

J. Maier, M. KachelrieB et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.

KSE Head Thorax | Abdomen
Head 14.5 26.8 32.5
Thorax 16.2 18.5 19.4
Abdomen 16.8 22.1 17.8
All data

J. Maier, M. KachelrieB et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.




Results

Testing

Head Thorax Abdomen
Training
KSE
Head 14.5 26.8 32.5
Thorax 16.2 18.5 19.4
Abdomen 16.8 22.1 17.8
All data 14.9 20.5 19.3
HSE (Truncated prior, 22 cm FOM)
- 6.2 293.2 237.6
HSE (Truncated prior, shifted detector, 40 cm FOM)
- - 22.9 26.5
DSE, M, : ¢ Psim — Sy
Head 3.9 17.6 23.5
Thorax 12.2 2.5 11.6
Abdomen 27.1 13.2 2.3
All data 4.7 2.5 2.4
DSE, Mp P Psim — SMC
Head 1.3 14.9 15.2
Thorax 6.7 1.6 7.7
Abdomen 15.7 12.1 1.5
All data | 1.6 1.6
DSE: ]\/Ipep * Psim - e~ Psim —, Smc
Head 1.2 21.1 32.7
Thorax 8.8 1.5 9.1
Abdomen 11.9 10.9 1.3
All data 1.8 1.4 1.4

Mean absolute percentage er-
ror of the kernel-based scat-
ter estimation (KSE), the hy-
brid scatter estimation (HSE)
and the deep scatter estima-
tion (DSE) with respect to the
ground truth scatter distribu-
tion (MC simulation). Train-
ing data were generated sim-
ulating head, thorax and ab-
domen data at 120 kV, 140 kV.
The training was performed
for head, thorax and abdomen
data separately as well as
using all data together (left
column). DSE was trained
for three different mappings
(Mep : e Psim  —  Syc,
My @ psim — Smc, Mpep @ p-
e Psim  —  Syc). Note that
there are no training data for
the HSE as it is optimized on
a coarse MC simulation of the
testing data.

Values shown are the mean absolute percentage errors (MAPES) of the testing data.

Note that thorax and head suffer from truncation due to the small size of the 40x30 cm flat detector.
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Ground truth No correction KSE HSE DSE

Head, 140 kV,
22 cm FOM

Thorax, 140 kV,
22 cm FOM

Thorax, 140 kV,
40 cm FOM
(shifted detector)

Abdomen, 140 kV, ( )
22 cm FOM S .. ‘\. P

s

Abdomen, 140 kV,
40 cm FOM ,
(shifted detector) |



Ground truth No correction KSE HSE DSE

Head, 140 kV,
22 cm FOM

Thorax, 140 kV,
22 cm FOM

Thorax, 140 kV,
40 cm FOM
(shifted detector)

Abdomen, 140 kV,
22 cm FOM

Abdomen, 140 kV,
40 cm FOM
(shifted detector)




Scatter in Dual Source CT (DSCT)

T

Siemens SOMATOM Force ‘
dual source cone-beam spiral CT \

— — I Iprimary T SfOl“W&rd + P Scross
q T

Forward

Cross-Scatter
+ Cross-Scatter

Ground Truth Forward Scatter

/o - B /o .- S }/.ﬁ’-k\ ./a -
B .o \ & . N\ \
"IN ANXI A 3 £ %
' [ { h\ J
\\ Q 4 \\ Q 4 \\\ Q ] 4: \\ Q ,4
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C =40 HU, W= 300 HU, with 2D anti-scatter grid

J. Erath, T. Voéth, J. Maier, E. Fournié, M. Petersilka, K. Stierstorfer, and M. KachelrieB. Deep learning-based

forward and cross-scatter correction in dual source CT. Med. Phys. 48:4824-4842, July 2021.




finite size focal spot

Measurement-Based
Scatter Estimation

L) e pre patient collimation

scatter scatter
detector imaging detector rows detector

fov 1 (| [ | [ | [ | | [ | [ | . ov

primary intensity profile

— _>Z

J. Erath, T. Vo6th, J. Maier, E. Fournié, M. Petersilka, K. Stierstorfer, and M. KachelrieR. Deep learning-based

forward and cross-scatter correction in dual source CT. Med. Phys. 48:4824-4842, July 2021.



Cross-DSE

Ground Truth Uncorrected xDSE (2D, xSSE) Measurement-based
MAE = 42.6 HU MAE = 4.9 HU MAE =10.6 HU v

xDSE (2D, xSSE) maps
primary + forward scatter + cross-scatter + cross-scatter approximation — cross-scatter

Images C =40 HU, W = 300 HU, difference images C = 0 HU, W = 300 HU

J. Erath, T. Voth, J. Maier, E. Fournié, M. Petersilka, K. Stierstorfer, and M. KachelrieR. Deep learning-based

forward and cross-scatter correction in dual source CT. Med. Phys. 48:4824-4842, July 2021.



Conclusions on DSE

 DSE needs about 3 ms per CT and 10 ms per CBCT projection (as of 2020).
 DSE is a fast and accurate alternative to MC simulations.
 DSE outperforms kernel-based approaches in terms of accuracy and speed.

* Facts:
— DSE can estimate scatter from a single (!) x-ray image.
— DSE can accurately estimate scatter from a primary+scatter image.
— DSE generalizes to all anatomical regions.

— DSE works for geometries and beam qualities differing from training.
— DSE may outperform MC even though DSE is trained with MC.

 DSE is not restricted to reproducing MC scatter estimates.

 DSE can rather be trained with any other scatter estimate, including those
based on measurements.

J. Maier, M. KachelrieB et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.

J. Maier, M. KachelrieB et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Thank You!

* This presentation will soon be available at www.dkfz.de/ct.

* Job opportunities through DKFZ’s international PhD or Postdoctoral
Fellowship programs (marc.kachelriess@dkfz.de).

« Parts of the reconstruction software were provided by
RayConStruct® GmbH, Niirnberg, Germany.
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