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Bead positions unknown, trajectory perfectly known

GEOMETRY FROM BEADS



Geometry Definition (Dual Source Micro-CT)
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Calibration Procedure

* Acquire a sequence scan of several metal
beads/spheres

« Segment the center of mass in each
projection (or do better, see later slides)

* Find a geometry and sphere positions that fit
the measurements
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Calibration Procedure

* Finding a geometry and bead positions that fit the measurements is
equivalent to solve:

E’ :Z((”i(Q)_ﬁi)z +(vi(Q)_{>i)2)

1
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* This cost function obeys several local optima thus a global optimum
has to be found

* Literature shows that optimization can not be done by common
numerical methods, e.g. Levenberg-Marquardt so we use an adaptive
genetic algorithm



Results
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Estimation of spheres and sphere segments in projections

ESTIMATION OF BEAD CENTERS
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Abstract

The detection of spherical markers in x-ray projections is an important task
in a variety of applications, e.g. geometric calibration and detector distortion
correction. Therein, the projection of the sphere center on the detector is of
particular interest as the used spherical beads are no ideal point-like objects.
Only few methods have been proposed to estimate this respective position on
the detector with sufficient accuracy and surrogate positions, e.g. the center of
gravity, are used, impairing the results of subsequent algorithms. We propose to
estimate the projection of the sphere center on the detector using a simulation-

dkfz.



Aim

 We seek to minimize the weighted difference between the measured
projections g(u, v) and simulated sphere projections p(r, s, u, v) to
find the projection of the sphere center r.

1
21?}1; /du dv (0,0} (;qun(u; v) —p(r, s, u, “U))Q

* This also includes finding the focal spot position s and the sphere
center r (nearby their assumed positions), as well as the beam
hardening polynomial coefficients c.

 The sphere radius is well-known, but would automatically be
absorbed when determining c, r and s.



Simulation Parameters

 We use a simple flat detector geometry:
— R =570 mm
— Rp =380 mm
— du=dv=04mm
— Nu = Nv=1024

* A sphere with diameter 6 mm made of steel (Fe70Cr30) is simulated
at 46x46 different positions on the detector. Hence, the deviation
maps show the deviation between estimated and simulated position
for these 2116 positions.

* Furthermore, the simulated detector values were disturbed using
Gaussian noise with a FWHM of 0.5 mm.



Simulation Parameters

 The sphere projections were generated using the Tucker tungsten
spectrum. To simulate an unknown spectrum, we distinguish between
the spectrum used for simulation and the spectrum used in the

estimation procedure:

 Simulation:
_ 80 kV

— Anode angle of 12°
— Characteristic peaks and bremsstrahlung

« Estimation:
— 140 kV

— Anode angle of 6°
— Characteristic peaks and bremsstrahlung

— 0.5 mm Al prefiltration Energy/keV

Spectrum used in Simulation ——
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Clipping

« As the metal beads are usually connected to a holder, only a
segment of the sphere can be used for estimation.

* This is modelled by clipping the sphere in v-direction between the
real center and the maximum extent in v-direction.

0% clipping 25% clipping 50% clipping




Absolute Position Error

With Noise, Proposed Method (q")

0% Clipping 25% Clipping 50% Clipping
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Results

With Noise, Proposed Method (c,q%+c,q'+c,q?)

0% Clipping 25% Clipping 50% Clipping

=) C=75pm, W=150 ym



HOW FLAT ARE FLAT DETECTORS?



Example

Deviation in u Deviation in v

C=-0.3px, W=1 px



Remove Perspective Component

* Distortions may include misaligned perspective geometry.
 Use perspective model

CooU + Co1V + Cp2
Cool + C21v + 1
~ C10U + €11V + €12

Ty(u,v) =

CooU + C21V + 1

Tu(u, V) =

for u and for v distortion to find Cjj that minimize the distortions.




Results (Detector 1)

Measurement Perspective Distortion

- - -
Deviation in u ) .

Deviation in v

C=-0.3 px, W=1 px C=-0.3 px, W=1 px C=0px, W=0.4 px Cuuum




Intrinsic Calibration

MENG'S METHOD



Aim
* Meng et al. proposed a simple method to estimate misalignment

parameters from the sum of the acquired projections.

 In their publication, all misalignment parameters were estimated while
accurate results were only derived for u-shift, skew and roll.

* In the following the accuracy of Meng’s method to determine
misalignment parameters is evaluated.

« Evaluation of the influence of beam hardening and truncation on the
estimation.
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Method

For a given object f(r,«,z) the sum of projections SOP is given by:
SOP(u,v) = /Xaf[f('r',oz,z)]da' (1)
where X, is the x-ray transform for the angle a:
Xaf(rv Q, Z) — Pa (ua U)

A rotation of source and detector is similar to a rotation of the object.
Thus (1) can be written as:

SOP(u,v) = on[f(r,a — ', 2)]dd’
Using the linearity of the x-ray transform:

SOP(u,v) = X /[f(fr, a—a,z)]dd



Implementation

* Provide an ideal geometry (souvVec,,,,) and a set of projections that was
acquired over an angular range of 360°. (If the real measurement geometry
differs from that ideal geometry, misalignment artifacts are introduced to
the reconstruction.)

 The sum of the provided projections is calculated.

* For every geometry estimate (souvVecg,,) a rebinning of SOP from real to
ideal is performed and the following cost function is evaluated

C = [dudv (SOPrebinned(ua 'U) — SOPrebinned(_u: U))Q

 The geometry that minimizes the cost function is assumed to be the actual
measurement geometry.



Simulations (Misalignment)

Definition of an ideal geometry

Simulation of projections of a water sphere with a corrupted
geometry. The sphere is placed off-center to avoid a rotational
symmetry.

For every simulation only one of the misalignment parameters (u-
shift, v-shift, w-shift, skew, roll, tilt) differs from the ideal geometry

Evaluation of the cost function as well as the reconstruction results
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Results: Cost Function
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Results: Cost Function
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Skew
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Results: Cost Function

Roll

—\/glue of Cost Function
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Results: Cost Function

Tilt

—\/glue of Cost Function
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Results: Cost Function

w-Shift (R-p-Shift)
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Results: Reconstructions

Uncorrected Reconstructions xy-Slice

Increasing deviation from ideal geometry
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C/W=(0.5/0.5)-103/ mm



Results: Reconstructions

Uncorrected Reconstructions xz-Slice

Increasing deviation from ideal geometry

u-Shift
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v-Shift

Skew

Roll

Tilt

C/W=(0.5/0.5)-103/ mm



Results: Reconstructions

Uncorrected Reconstructions yz-Slice
Increasing deviation from ideal geometry y
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Results: Reconstructions

Difference between Corrected and Ideal Reconstruction xy-Slice

Increasing deviation from ideal geometry - y
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C/W =(0.00/0.25) - 103/ mm




Results: Reconstructions

Difference between Corrected and Ideal Reconstruction xz-Slice

Increasing deviation from ideal geometry
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Results: Reconstructions

Difference between Corrected and Ideal Reconstruction yz-Slice

Increasing deviation from ideal geometry
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Simulations (Beam Hardening + Misalignment)

* Definition of an ideal geometry

« Simulation of projections of a sphere phantom with different
materials (water, bone, aluminum) with a corrupted geometry.

« Deviation of corrupted geometry from ideal geometry
— U-shift: 50 pixels
— Skew: 0.08 rad
— Roll: 0.1 rad

 Simulation of monochromatic data

* For simulation of polychromatic data
— 60 kV tube voltage, Tucker spectrum
— No prefilter
— 0.7 mm energy-integrating Csl detector



Results

Monochromatic Simulation

Ideal geometry Real geometry Est(isrraaltgdogelc:)r?lt)etry

Reconstructions
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Results

Polychromatic Simulation, No Prefiltration

Ideal geometry Real geometry Estimated geometry
(49.952/0.0799 / 0.0993)

Reconstructions

Difference to
reconstruction with ideal

82 (LD D) i A CIW=(0.0/0.05mm"



Results

Polychromatic Simulation, No Prefiltration

Squared difference of sum of Squared difference of sum of
projections, ideal geometry projections, estimated geometry

C/W=0/100 C/W=0/100

Value cost function: 3692146 Value cost function: 3604906



Simulations (Truncation + Misalignment)

* Definition of an ideal geometry

« Simulation of projections of a sphere phantom with different
materials (water, bone, aluminum) with a corrupted geometry.

« Deviation of corrupted geometry from ideal geometry
— U-shift: 50 pixels
— Skew: 0.08 rad
— Roll: 0.1 rad

 Simulation of monochromatic data

« Simulation of truncation in u- and v-direction by setting projection
values at the periphery to zero



Results

Monochromatic Simulation, Truncation in u-direction,

Ideal geometry Real geometry Estimated geometry
(15.32/0.082 / 0.150)
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Results » oS

Monochromatic Simulation, Truncation in u-direction,
limited area of optimization
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Results a v

Monochromatic Simulation, Truncation in v-direction,
limited area of optimization

Ideal geometry Real geometry Est(isrraaltgdog¢7%r?lt)etry

Reconstructions

ith ideal
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Difference to
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Conclusions

 The method of Meng et al. is able to estimate u-shift, skew and roll.
* For u-shift, skew and roll the cost function has a well-defined minimum.
* The parameters v-shift, tilt and R5-shift cannot be well estimated.

* The periodic behavior of the cost function for a variation of v-shift might
result from the interpolation process of the performed rebinning.

« Beam hardening seems to have only a very small influence on the
performance of the estimation.

* Truncation influences the performance of the estimation if it is not
considered appropriately within the optimization process.



Thank You!

* This presentation will soon be available at www.dkfz.de/ct.

* Job opportunities through DKFZ’s international PhD or Postdoctoral
Fellowship programs (marc.kachelriess@dkfz.de).

« Parts of the reconstruction software were provided by
RayConStruct® GmbH, Niirnberg, Germany.
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