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GEOMETRY FROM BEADS
Bead positions unknown, trajectory perfectly known
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Geometry Definition (Dual Source Micro-CT)
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Calibration Procedure

• Acquire a sequence scan of several metal 
beads/spheres

• Segment the center of mass in each 
projection (or do better, see later slides)

• Find a geometry and sphere positions that fit 
the measurements
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Calibration Procedure

• Finding a geometry and bead positions that fit the measurements is 
equivalent to solve:

• This cost function obeys several local optima thus a global optimum 
has to be found

• Literature shows that optimization can not be done by common 
numerical methods, e.g. Levenberg-Marquardt so we use an adaptive 
genetic algorithm
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Results

No Calibration With Calibration
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ESTIMATION OF BEAD CENTERS
Estimation of spheres and sphere segments in projections
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Aim

• We seek to minimize the weighted difference between the measured 
projections q(u, v) and simulated sphere projections p(r, s, u, v) to 
find the projection of the sphere center r.

• This also includes finding the focal spot position s and the sphere 
center r (nearby their assumed positions), as well as the beam 
hardening polynomial coefficients c.

• The sphere radius is well-known, but would automatically be 
absorbed when determining c, r and s.
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Simulation Parameters

• We use a simple flat detector geometry: 
– RF = 570 mm

– RD = 380 mm

– du = dv = 0.4 mm

– Nu = Nv = 1024

• A sphere with diameter 6 mm made of steel (Fe70Cr30) is simulated 
at 46×46 different positions on the detector. Hence, the deviation 
maps show the deviation between estimated and simulated position 
for these 2116 positions.

• Furthermore, the simulated detector values were disturbed using 
Gaussian noise with a FWHM of 0.5 mm.
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Simulation Parameters

• The sphere projections were generated using the Tucker tungsten 
spectrum. To simulate an unknown spectrum, we distinguish between 
the spectrum used for simulation and the spectrum used in the 
estimation procedure:

• Simulation: 
– 80 kV

– Anode angle of 12°

– Characteristic peaks and bremsstrahlung

• Estimation:
– 140 kV

– Anode angle of 6°

– Characteristic peaks and bremsstrahlung

– 0.5 mm Al prefiltration
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Clipping

• As the metal beads are usually connected to a holder, only a 
segment of the sphere can be used for estimation.

• This is modelled by clipping the sphere in v-direction between the 
real center and the maximum extent in v-direction.

0% clipping 25% clipping 50% clipping
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Absolute Position Error
With Noise, Proposed Method (q1)

0% Clipping 25% Clipping 50% Clipping

C = 1500 µm, W = 3000 µm
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Results
With Noise, Proposed Method (c0q

0+c1q
1+c2q
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C = 75 µm, W = 150 µm

0% Clipping 25% Clipping 50% Clipping
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HOW FLAT ARE FLAT DETECTORS?
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Example

Deviation in u Deviation in v

C = -0.3 px, W = 1 px
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Remove Perspective Component

• Distortions may include misaligned perspective geometry.

• Use perspective model

for u and for v distortion to find cij that minimize the distortions.
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Results (Detector 1)

C = -0.3 px, W = 1 px

Measurement Perspective Distortion

Deviation in u

Deviation in v

C = -0.3 px, W = 1 px C = 0 px, W = 0.4 px
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MENG‘S METHOD
Intrinsic Calibration
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Aim
• Meng et al. proposed a simple method to estimate misalignment 

parameters from the sum of the acquired projections.

• In their publication, all misalignment parameters were estimated while 
accurate results were only derived for u-shift, skew and roll.

• In the following the accuracy of Meng’s method to determine 
misalignment parameters is evaluated.

• Evaluation of the influence of beam hardening and truncation on the 
estimation.

u shift

v shift

skew roll tilt

w shift
(RFD shift)
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Method

• For a given object                the sum of projections SOP is given by:

• where X is the x-ray transform for the angle :

• A rotation of source and detector is similar to a rotation of the object. 
Thus (1) can be written as:

• Using the linearity of the x-ray transform:
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Implementation

• Provide an ideal geometry (souvVecIdeal) and a set of projections that was 
acquired over an angular range of 360°. (If the real measurement geometry 
differs from that ideal geometry, misalignment artifacts are introduced to 
the reconstruction.)

• The sum of the provided projections is calculated.

• For every geometry estimate (souvVecReal) a rebinning of SOP from real to 
ideal is performed and the following cost function is evaluated

• The geometry that minimizes the cost function is assumed to be the actual 
measurement geometry.
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Simulations (Misalignment)

• Definition of an ideal geometry

• Simulation of projections of a water sphere with a corrupted 
geometry. The sphere is placed off-center to avoid a rotational 
symmetry.

• For every simulation only one of the misalignment parameters (u-
shift, v-shift, w-shift, skew, roll, tilt) differs from the ideal geometry

• Evaluation of the cost function as well as the reconstruction results
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Results: Cost Function
u-Shift
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Results: Cost Function
v-Shift
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Results: Cost Function
Skew
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Results: Cost Function
Roll
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Results: Cost Function
Tilt
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Results: Cost Function
w-Shift (RFD-Shift)
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Results: Reconstructions
Uncorrected Reconstructions xy-Slice

C / W = (0.5 / 0.5)  10-3 / mm

u-Shift

v-Shift

Skew

Roll

Tilt

Increasing deviation from ideal geometry y

xz

RFD-shift
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Results: Reconstructions
Uncorrected Reconstructions xz-Slice

C / W = (0.5 / 0.5)  10-3 / mm

u-Shift

v-Shift

Skew

Roll

Tilt

Increasing deviation from ideal geometry y

xz

RFD-shift
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Results: Reconstructions
Uncorrected Reconstructions yz-Slice

C / W = (0.5 / 0.5)  10-3 / mm

u-Shift

v-Shift

Skew

Roll

Tilt

Increasing deviation from ideal geometry y

xz

RFD-shift
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Results: Reconstructions
Difference between Corrected and Ideal Reconstruction xy-Slice

C / W = (0.00 / 0.25)  10-3 / mm

u-Shift

v-Shift

Skew

Roll

Tilt

Increasing deviation from ideal geometry y

xz

RFD-shift
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Results: Reconstructions
Difference between Corrected and Ideal Reconstruction xz-Slice

u-Shift

v-Shift

Skew

Roll

Tilt

Increasing deviation from ideal geometry

C / W = (0.00 / 0.25)  10-3 / mm

y

xz

RFD-shift
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Results: Reconstructions
Difference between Corrected and Ideal Reconstruction yz-Slice

u-Shift

v-Shift

Skew

Roll

Tilt

RFD-shift

Increasing deviation from ideal geometry

C / W = (0.00 / 0.25)  10-3 / mm

y

xz
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Simulations (Beam Hardening + Misalignment)

• Definition of an ideal geometry

• Simulation of projections of a sphere phantom with different 
materials (water, bone, aluminum) with a corrupted geometry. 

• Deviation of corrupted geometry from ideal geometry
– U-shift: 50 pixels

– Skew: 0.08 rad

– Roll: 0.1 rad

• Simulation of monochromatic data

• For simulation of polychromatic data
– 60 kV tube voltage, Tucker spectrum

– No prefilter

– 0.7 mm energy-integrating CsI detector



41

Results
Monochromatic Simulation

C / W = (0.15 / 0.5) mm-1 C / W = (0.15 / 0.5) mm-1 C / W = (0.15 / 0.5) mm-1
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Ideal geometry Real geometry Estimated geometry
(50 / 0.08 / 0.1)

C / W = (0.0 / 0.05) mm-1 C / W = (0.0 / 0.05) mm-1 C / W = (0.0 / 0.05) mm-1



42

Results
Polychromatic Simulation, No Prefiltration

C / W = (0.15 / 0.5) mm-1 C / W = (0.15 / 0.5) mm-1 C / W = (0.15 / 0.5) mm-1

C / W = (0.0 / 0.05) mm-1 C / W = (0.0 / 0.05) mm-1 C / W = (0.0 / 0.05) mm-1
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(49.952 / 0.0799 / 0.0993)
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Results
Polychromatic Simulation, No Prefiltration

Value cost function: 3692146 Value cost function: 3604906

Squared difference of sum of 
projections, ideal geometry

Squared difference of sum of 
projections, estimated geometry

C / W = 0 / 100 C / W = 0 / 100
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Simulations (Truncation + Misalignment)

• Definition of an ideal geometry

• Simulation of projections of a sphere phantom with different 
materials (water, bone, aluminum) with a corrupted geometry. 

• Deviation of corrupted geometry from ideal geometry
– U-shift: 50 pixels

– Skew: 0.08 rad

– Roll: 0.1 rad

• Simulation of monochromatic data

• Simulation of truncation in u- and v-direction by setting projection 
values at the periphery to zero
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Results
Monochromatic Simulation, Truncation in u-direction, 

C / W = (0.15 / 0.5) mm-1 C / W = (0.15 / 0.5) mm-1 C / W = (0.15 / 0.5) mm-1
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Ideal geometry Real geometry Estimated geometry
(15.32 / 0.082 / 0.150)

C / W = (0.0 / 0.05) mm-1 C / W = (0.0 / 0.05) mm-1 C / W = (0.0 / 0.05) mm-1
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Results
Monochromatic Simulation, Truncation in u-direction, 

limited area of optimization

C / W = (0.15 / 0.5) mm-1 C / W = (0.15 / 0.5) mm-1 C / W = (0.15 / 0.5) mm-1
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(50 / 0.08 / 0.1)

C / W = (0.0 / 0.05) mm-1 C / W = (0.0 / 0.05) mm-1 C / W = (0.0 / 0.05) mm-1
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Results
Monochromatic Simulation, Truncation in v-direction, 

C / W = (0.15 / 0.5) mm-1 C / W = (0.15 / 0.5) mm-1 C / W = (0.15 / 0.5) mm-1
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Ideal geometry Real geometry Estimated geometry
(55.94 / 0.047 / -0.15)

C / W = (0.0 / 0.05) mm-1 C / W = (0.0 / 0.05) mm-1 C / W = (0.0 / 0.05) mm-1
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Results
Monochromatic Simulation, Truncation in v-direction, 

limited area of optimization

C / W = (0.15 / 0.5) mm-1 C / W = (0.15 / 0.5) mm-1 C / W = (0.15 / 0.5) mm-1
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Estimated geometry
(50 / 0.08 / 0.1)
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Conclusions

• The method of Meng et al. is able to estimate u-shift, skew and roll. 

• For u-shift, skew and roll the cost function has a well-defined minimum.

• The parameters v-shift, tilt and RFD-shift cannot be well estimated.

• The periodic behavior of the cost function for a variation of v-shift might 
result from the interpolation process of the performed rebinning.

• Beam hardening seems to have only a very small influence on the 
performance of the estimation.

• Truncation influences the performance of the estimation if it is not 
considered appropriately within the optimization process. 
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Thank You!

• This presentation will soon be available at www.dkfz.de/ct.

• Job opportunities through DKFZ’s international PhD or Postdoctoral 
Fellowship programs (marc.kachelriess@dkfz.de). 

• Parts of the reconstruction software were provided by 
RayConStruct® GmbH, Nürnberg, Germany.
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