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Motivation

Deep neural networks (DNNs) are powerful 
tools to reduce artifacts caused by

• Motion

• Scatter

• …

Networks have to be invariant in order to 
model non-injectivity of the data

• Invariances come from non-injective 
layers, e.g., max-pooling, ReLU

• Metal

• Noise

Low dose

Routine dose

Aim: Reconstruct those invariances
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Introduction
Deep Learning-Based CT Image Denoising

• Supervised in projection domain:

• Supervised in image domain:

• Supervised dual domain:

: low dose projections

: high dose projections

: low dose images

: high dose images
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Introduction
Deep Learning-Based CT Image Denoising

Most work on improving     focused 
on finding better

1. distance functions

2. architectures

3. training schemes

In particular, training     as GAN with      
being an adversarial loss leads to 
visually impressive results2

Chest Abdomen Head
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1Chen, Hu, Yi Zhang, Weihua Zhang, Peixi Liao, Ke Li, Jiliu Zhou, and Ge Wang. 2017. “Low-Dose CT via Convolutional Neural Network.” Biomedical Optics Express 8 (2): 679–94.
2Yang, Qingsong, […], Ge Wang. 2018. “Low-Dose CT Image Denoising Using a Generative Adversarial Network with Wasserstein Distance and Perceptual Loss.” IEEE TMI 37 (6): 1348–57.
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• Rombach et al.1 reconstructed invariances of classifiers.

• Was later adapted to reconstruct invariances of DNNs for 
CT image denoising.2

• Idea: Learn complete data representation using VAE. 
Disentangle what the network learned and what it ignores 
using cINN.

• Problem: VAE may introduce invariances (bottom)

Introduction
Invariances of DNNs
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1Rombach, Robin, Patrick Esser, and Björn Ommer. "Making sense of CNNs: Interpreting deep representations and their invariances with INNs”, ECCV, 2020.
2Eulig, Elias, Björn Ommer, and Marc Kachelrieß. “Reconstructing Invariances of CT Image Denoising Networks Using Invertible Neural Networks.” CT Meeting, 2020.

𝒙 𝒚 Sampled Invariances ෥𝒙

Sampled Invariances fed back into 𝒇𝜽𝒇𝜽(𝒙)VAE rec.

𝝈(෥𝒙)

𝝈(𝒇𝜽 ෥𝒙 )
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DNNs are vulnerable to adversarial examples

Example: Image classification:

Given: Classifier 

Input image

True class:                     

(Target class:                                ) 

Introduction
Adversarial Attacks
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Adversarial Example

1

Bagel Piano
2

Untargeted:

Targeted:

Original

1Hendrik Metzen, J., Chaithanya Kumar, M., Brox, T., & Fischer, V. (2017). Universal adversarial perturbations against semantic image segmentation. In ICCV.
2Chen, Pin-Yu, […], Cho-Jui Hsieh. 2017. “ZOO: Zeroth Order Optimization Based Black-Box […]” In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, 15–26. AISec ’17

: Input image

: Target label 
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Finding adversarial perturbations 

Fast gradient sign method (FGSM)

If network was trained with loss function     (e.g., 
cross-entropy), we can backpropagate to

Basic iterative method (BIM)

Apply FGSM iteratively

Introduction
Adversarial Attacks
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Adversarial Example

1

Bagel Piano
2

Original

1Hendrik Metzen, J., Chaithanya Kumar, M., Brox, T., & Fischer, V. (2017). Universal adversarial perturbations against semantic image segmentation. In ICCV.
2Chen, Pin-Yu, […], Cho-Jui Hsieh. 2017. “ZOO: Zeroth Order Optimization Based Black-Box […]” In Proceedings of the 10th ACM Workshop on Artificial Intelligence and Security, 15–26. AISec ’17

: Input image

: Target label 
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Low dose CT image and projection dataset1

• 50 {head, chest, abdomen} scans

• Reconstructions of size 512×512 px

• Acquired with SOMATOM Definition Flash

• For each scan, simulated low dose acquisitions are available 
(25% dose for abdomen/head, 10% for chest)

Use weighted sampling scheme, such that slices from each 
patient were sampled with equal probability

Methods
Dataset

1C. McCollough, et al., “Data from Low Dose CT Image and Projection Data [Data Set],” The Cancer Imaging Archive, 2020. 
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CNN-101:

• Simple 3-layer CNN 

• Trained to with ℒ𝟐 loss

WGAN-VGG2:

• 8-layer CNN as generator

• Trained as Wasserstein GAN (WGAN)

• Additional perceptual loss using ImageNet-pretrained VGG

Gaussian filter with rectangular invariances (Gauss + RI)

• Gaussian filter with unit standard deviation

• Returns zero for all pixels inside a center 30×30 px square

Methods
Denoising DNNs

1H. Chen et al., "Low-dose CT denoising with convolutional neural network”, ISBI 2017, 2017.
2Q. Yang et al., "Low-Dose CT Image Denoising Using a Generative Adversarial Network […]”, in IEEE TMI, vol. 37, no. 6, 2018.
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Methods
Reconstructing Invariances

Adversarial perturbations
Small perturbations in the
input that lead to large
alterations in predictions

Find invariances        via

In our experiments we use for      :

• Mean-squared-error (MSE), bounded by +1

• Structural dissimilarity: 𝟏 − 𝐒𝐒𝐈𝐌 /𝟐

• Perceptual loss using ImageNet-pretrained VGG16

Optimize        using Adam optimizer for 3k iterations 

Invariances
Large perturbations in the
input that leave network
predictions unaffected
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Results
CNN-10

Lung: C = -600 HU, W = 1500 HU.    Abdomen: C = 50 HU, W = 400 HU.
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Results
CNN-10

Lung: C = -600 HU, W = 1500 HU.    Abdomen: C = 50 HU, W = 400 HU.    Differences: C = 0 HU, W = 100 HU.
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Results
WGAN-VGG

Lung: C = -600 HU, W = 1500 HU.    Abdomen: C = 50 HU, W = 400 HU.
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Results
WGAN-VGG

Lung: C = -600 HU, W = 1500 HU.    Abdomen: C = 50 HU, W = 400 HU.    Differences: C = 0 HU, W = 100 HU.
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Results
Gaussian + RI

Lung: C = -600 HU, W = 1500 HU.    Abdomen: C = 50 HU, W = 400 HU.
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Results
Gaussian + RI

Lung: C = -600 HU, W = 1500 HU.    Abdomen: C = 50 HU, W = 400 HU.    Differences: C = 0 HU, W = 100 HU.
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Drawbacks of previous approach

• Generated        generally do not lie on the data 
manifold of low dose images

• Sampling new invariances requires new

Natural invariances

Generate natural (on-manifold)        by training a 
conditional generator                              together with a 
critic

• Train on 80×80 px patches

Methods
Generate natural 𝒙𝐢𝐧𝐯

: Downsampling at stage 𝒊

Wasserstein 
Distance
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Results
CNN-10
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Summary & Conclusions

Image-domain optimization

• The presented approach can generate perturbations to which 
common DNNs for CT image denoising are invariant.

• Magnitude of invariances is dependent on network structure and 
training scheme.

Adversarial training scheme

• To ensure natural (on-manifold) perturbations, we need to introduce 
an adversarial training scheme.

• Preliminary results indicate that natural perturbations mostly alter 
noise structure and much less the anatomical structure.
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Thank You!
• This work was supported in part 

by the Helmholtz International 
Graduate School for Cancer 
Research, Heidelberg, Germany. 

• This presentation will soon be 
available at www.dkfz.de/ct.

• Job opportunities through DKFZ’s 
international PhD or Postdoctoral 
Fellowship programs 
(marc.kachelriess@dkfz.de). 
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