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Motivation

• Scatter is a major cause of 
image quality degradation in 
PET leading to:
– Loss of contrast

– Quantification bias

– Image artifacts

• Scatter fraction in PET is often 
in the range of 30 - 40 %1,2,3,4

for energies > ~420 keV.

• Precise scatter correction is 
crucial to maintain the 
diagnostic quality of the PET 
scan.

No scatter correction MC scatter correction

[1] V. Bettinardi et al., “Physical performance of the new hybrid PET/CT discovery-690”, Med. Phys. 38:5394–411, 2011
[2] S.Surti et al., “Performance of philips gemini TF PET/CT scanner with special consideration for its time-of-light imaging capabilities”, J. Nucl. Med. 48(3):471–80, 2007.
[3] J. van Sluis et al., “Performance characteristics of the digital biograph vision PET/CT system”, J. Nucl. Med. 60(7):1031–6, 2019.
[4] B. Spencer B et al., “Performance evaluation of the EXPLORER total-body PET/CT scanner based on NEMA NU-2 2018 standard with additional tests for extended geometry”,  NSS/MIC 2019.
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Scatter Estimation / Correction: Prior Work

Gold standard: Monte Carlo Simulation1

Numerical solution of the 
Boltzmann transport equation 
using physics-based random 
sampling.

Single Scatter Simulation2

[1] H. Zaidi, “Relevance of accurate Monte Carlo modeling in nuclear medical imaging”, Med. Phys. 26(4):574-608, 1999.
[2] J.M. Ollinger, “Model-based scatter correction for fully 3D PET”, Phys. Med. Biol. 41(1), 153–176, 1996.
[3] L. M. Popescu et al. “PET energy-based scatter estimation and image reconstruction with energy-dependent corrections”, Phys. Med. Biol. 51(11), 2919–2937, 2006. 
[4] Y. Berker et al., “Deep Scatter Estimation in PET: Fast Scatter Correction Using a Convolutional Neural Network”, NSS/MIC 2018.

Analytic solution of the 
Boltzmann transport 
equation using single scatter 
approximation.

Energy-based Scatter Estimation3

Make use of the difference 
between the energy 
spectra of the unscattered
and scattered photons.

Deep Learning-based Scatter Estimation4

Train neural networks to correct for scatter / 
predict PET scatter distributions.
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Deep Learning-based Scatter 
Estimation / Correction

Domain # TOF Training / Application

Image

3 Yes Uncorrected Reconstruction  Scatter-corrected reconstruction

4 No Uncorrected Reconstruction  Scatter-corrected reconstruction

5 No Uncorrected Reconstruction  Scatter-corrected reconstruction

6 Yes Monte Carlo correction based on DL Reconstruction

Sinogram

1 No Single scatter  MC, emission/attenuation data  MC

2 No Emission/attenuation data  Single scatter

7 No Emission/attenuation data  MC scatter

[1] H. Qian et al., “Deep Learning Models for PET Scatter Estimations”, NSS/MIC 2017.
[2] Y. Berker et al., “Deep Scatter Estimation in PET: Fast Scatter Correction Using a Convolutional Neural Network”, NSS/MIC 2018.
[3] J.Yang et al., “Joint correction of attenuation and scatter in image space using deep convolutional neural networks for dedicated brain 18F-FDG PET”, Phys. Med. Biol. 64(7), 2019.
[4] I. Shiri et al., “Deep-JASC: joint attenuation and scatter correction in whole-body 18F-FDG PET using a deep residual network”. EJNMMI 47(11), 2533–2548, 2020.
[5] S. Mostafapour et al., “Feasibility of Deep Learning-Guided Attenuation and Scatter Correction of Whole-Body 68Ga-PSMA PET Studies in the Image Domain”, . Clin. Nucl. Med. 46(8), 609–615, 2021
[6] K. Li et al., “Deep Learning Accelerates Accurate Scatter Correction with Histo-image in TOF PET/CT System”, NSS/MIC 2022
[7] B. Laurent et al, “PET scatter estimation using deep learning U-Net architecture”, Phys. Med. Biol. 68(6), 2023. 
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Sinogram Domain Scatter Estimation 
What’s New in this Work?

• Deep scatter estimation (DSE) for TOF PET scans:
– Can DSE be generalized to different TOF bins?

– Is there an advantage of processing all TOF bins simultaneously?

• Application to long axial FOV PET scanner:
– Can DSE be generalized to highly oblique planes?

Whole-body TOF PET 
system.
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Data Generation: Monte Carlo Simulation
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Data Generation: Monte Carlo Simulation
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Aim: Replace this step by a neural network.
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Data Representation
Emission data

z

ξ

• All experiments shown in the following use 2D sub-
sinograms in ξ-z-plane, i.e. for each plane we have: 

50 angles, 0°-180°, Δα = 3.6° (not all angles shown)

33 TOF bins, ΔTOF = 143 ps (not all TOF bins shown)

35 segments, Max. ring diff. = 322, axial compr. = 19 (not all shown)

α

TOF

z

Segments (ring difference)

 57750 ξ-z-planes / scan
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Data Representation
Scatter distributions

z

ξ

• All experiments shown in the following use 2D sub-
sinograms in ξ-z-plane, i.e. for each plane we have: 

50 angles, 0°-180°, Δα = 3.6° (not all angles shown)

33 TOF bins, ΔTOF = 143 ps (not all TOF bins shown)

35 segments, Max. ring diff. = 322, axial compr. = 19 (not all shown)
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• Use measured activity (trues + scatter + randoms), pep-image, and attenuation 
image as 3-channel input to a U-net. 

• Minimize MSE between prediction and the MC to optimize the network’s weights

• Training on 50 patients / Testing on 6 patients.

PET Deep Scatter Estimation
Realization #1: Each TOF bin as separate input

MC 
Scatter

Emission data
(Trues + Scatter 

+ Randoms)

Pep-
Image

Attenuation
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Pep-Image
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scatter 
event
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Pep = Approximation of single-
scattering in forward direction.
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[1] B. Ohnesorge et al., “Efficient correction for CT image artifacts caused by objects extending outside the scan field of view”, Med. Phys. 27(1), 39–46, 2000
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• Use measured activity (trues + scatter + randoms), pep-image, and attenuation 
image as 3-channel input to a U-net. 

• Minimize MSE between prediction and the MC to optimize the network’s weights

• Training on 50 patients / Testing on 6 patients.

PET Deep Scatter Estimation
Realization #1: Each TOF bin as separate input
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PET Deep Scatter Estimation
Realization #1: Each TOF bin as separate input

MC 
Scatter

Emission data
(Trues + Scatter 

+ Randoms)

Pep-
Image

Attenuation

• Use measured activity (trues + scatter + randoms), pep-image, and attenuation 
image as 3-channel input to a U-net. 

• Minimize MSE between prediction and the MC to optimize the network’s weights

• Training on 50 patients / Testing on 6 patients.
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• Use measured activity (trues + scatter + randoms), pep-image, and attenuation of 
all TOF bins as multi-channel input.

• Minimize MSE between prediction and the MC to optimize the network’s weights

• Training on 50 patients / Testing on 6 patients.

PET Deep Scatter Estimation
Realization #2: All TOF bins as multi-channel input

MC 
Scatter

Emission data
(Trues + Scatter 

+ Randoms)

Pep-
Image

Attenuation

TOF
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DSE Testing (6 Patients)

Measurement
Trues + scatter + randoms

OSEM + SSS Monte Carlo

µ-Map

DSE

OSEM + MC

OSEM + DSE

Comparison Comparison
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Results: TOF-bin 0, Segment 0, Angles 0 - 49

Monte Carlo Simulation DSE #1 (single inputs) DSE #2 (all TOF)
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Results: TOF-bin 0, Segment 0, Angles 0 - 49

Monte Carlo Simulation Relative error DSE #1 Relative error DSE #2

C = 0 %, W = 60 %
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Results: TOF-bin 0, Segments 0 - 34, Angle 0 

C = 0 %, W = 60 %

Monte Carlo Simulation DSE #1 (single inputs) DSE #2 (all TOF)
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Results: TOF-bin 0, Segments 0 - 34, Angle 0 

C = 0 %, W = 60 %

Monte Carlo Simulation Relative error DSE #1 Relative error DSE #2

C = 0 %, W = 60 %
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Results: TOF-bins 0 - 32, Segment 0, Angle 0 

C = 0 %, W = 60 %

Monte Carlo Simulation DSE #1 (single inputs) DSE #2 (all TOF)
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Results: TOF-bins 0 - 32, Segment 0, Angle 0 

C = 0 %, W = 60 %

Monte Carlo Simulation Relative error DSE #1 Relative error DSE #2

C = 0 %, W = 60 %
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Evaluation for All Test Patients – Mean 
Absolute Percentage Error of Scatter Estimates

Angular 
dependence

Segment 
dependence

TOF bin 
dependence

All TOF bins as channelsSingle TOF bin
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PET Reconstructions + Scatter Correction
Female patient, BMI = 43

No Correction Siemens SSS DSE #1Monte Carlo (MC)

C = 2000, W = 4000

DSE #2
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PET Reconstructions + Scatter Correction
Female patient, BMI = 43

(No Correction – MC)/MC (Siemens SSS – MC)/MC (DSE #1 – MC)/MCMonte Carlo (MC)

C = 0 %, W = 100 %

(DSE #2 – MC)/MC

Avg: 140.7 % Avg: 27.8 % Avg: 6.5 % Avg: 7.1 %
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Conclusions

• DSE can reproduce Monte Carlo Scatter estimates with a mean 
absolute percentage error (MAPE) of about 6 % (SSS error: 23 %).

• Similar trends are observed for scatter-corrected reconstructions 
with a MAPE of 7 % for DSE and a MAPE of 28 % for SSS.

• A single DSE network can be trained to account for different TOF 
bins and different segments, however, with a slightly reduced 
accuracy for higher TOF values and highly oblique planes.

• No advantage of processing all TOF bins at once as different input 
channels to the network.

• Runtime: 5 ms per sample (520 x 645), 5 min per data set                    
(~ runtime of SSS).



26

Thank You!

This presentation will soon be available at www.dkfz.de/ct 

Job opportunities through DKFZ’s international PhD or Postdoctoral 
Fellowship programs (www.dkfz.de), or directly through Prof. Dr. Marc 

Kachelrieß (marc.kachelriess@dkfz.de).

Parts of the reconstruction software were provided by RayConStruct®

GmbH, Nürnberg, Germany.


