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Nomenclature

• Iteration = Epoch

• Batch = Subset (randomly changing for each epoch)

• Loss function = Cost function

• Learning rate = 
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(Reizaufnahme) (Reizabgabe)
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Activation Functions

Function Equation Plot

Identity

Sigmoid

Hard 

sigmoid

Tanh

Softsign

Softplus

Function Equation Plot

ReLU

Leaky 

ReLU

ELU

Inverse 

square root

LU

… … …
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Binary Logistic Regression

• What if y is categoric, e.g. 𝒚 ∈ {𝟎, 𝟏} ?

• Linear regression has undesired properties!

• Use logistic model instead (sigmoid function)

Years of smoking

Cancer

No Cancer

Years of smoking

Cancer

No Cancer
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Loss Function

• The neural network coefficients (weights and biases) c are chosen by 
minimizing a loss function (cost function)

with xn being the training data input, y(c, xn) being the network 
output, and yn being the so-called labels, i.e. the training target, and 
N being the number of training samples.

• An example for such a loss function is the MSE loss
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Fully-Connected Neural Network

• Each layer fully connects to previous layer

• Difficult to train (many parameters in W and b)

• Spatial relations not necessarily preserved

Hidden Hidden Output Hidden Input 
e.g. 512×512×3 pixels
e.g.

e.g. 1 label
e.g. Copenhagen

Output:Input:
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Universal Approximation Theorem1

• A fully-connected network with at least three layers is also called a multi 
layer perceptron (MLP).

• For any function 𝒉 𝒙 ∈ 𝑪 ∈ ℝ𝑴 we can find a function 𝒈 𝒙 ∈ ℛ𝑴(𝝈) for 
which 𝒉 𝒙 − 𝒈 𝒙 𝒑 < 𝝐.

• Any 3-layer MLP with appropriately chosen layer sizes and activation 
function, e.g. the sigmoid function, is a universial function approximator.

• This theorem does not provide any insight into how to find the unknowns!

3-layer MLP with final activation linear and 
𝑁 hidden neurons

1Hornik, Kurt; Stinchcombe, Maxwell; White, Halbert (1989). Multilayer Feedforward Networks are Universal 
Approximators. Neural Networks. Vol. 2. Pergamon Press. pp. 359–366; Theorem 2
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Fully-Connected Neural Network

• Each layer fully connects to previous layer

• Difficult to train (many parameters in W and b)

• Spatial relations not necessarily preserved

Hidden Hidden Output Hidden Input 
e.g. 512×512×3 pixels
e.g.

e.g. 1 label
e.g. Copenhagen

Output:Input:
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Convolutional Neural Network (CNN)

• Replace dense W in                                    by a sparse matrix W with 
sparsity being of convolutional type (band diagonal of Toeplitz type).

• CNNs consist (mainly) of convolutional layers.

• Convolutional layers are not fully connected.

• Convolutional layers are small, say 3×3, convolution 
kernels whose entries need to be found by training.

• CNNs preserve spatial relations to some extent.

G kernels 
3×3×F

Src
512×512×F

Dst
512×512×G

Attention: No convolution in depth direction! 

Here, a 2D example is shown. Conv layers also exist in 3D and higher dimensions.

Only three unknowns!
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Convolution Layers
• Input layer S

– vector of size I with F features: I×F

– image of size I by J with F features: I×J×F

– volume of size I by J by K with F features: I×J×K×F

– …

• Convolution kernel K
– G kernels of size (2A+1)×(2B+1)×F with or without padding*

• Output layer D
– same spatial dimensions as input layer*

– G features (depth G)

G kernels 
3×3×F

Src
512×512×F

Dst
512×512×G

Attention: No convolution in depth direction! 

*Convolution may include a stride (step size) > 1. Similar to convolution with stride 1 follwed by pooling.
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Row Interpolation to Mimick zFFS

C = 60 HU, W = 360 HU C = -400 HU, W = 1500 HU C = 60 HU, W = 400 HU

Random synthetic phantom

Example projection

C = 0 HU, W = 400 HU

Ground truth
with zFFS

RIDL trained with 
synthetic data;

single input

C = 0 HU, W = 200 HU

RMSE: 2.37 HU RMSE: 1.63 HU

Without zFFS
(LI)
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Pooling
Downsampling

• Input layer S
– image of size I by J with F features: I×J×F

– …

• Pooling kernel
– pooling function, e.g. max, mean, stochastic, …

– size and strides 

• Output layer D
– reduced spatial size

– same depth
2×2 stride 2×2 

max pool

Src
64×64×F

Dst
32×32×F

2×2 with 
stride 2

1 1 1 3 2 3 1 2

2 3 0 3 1 9 6 9

1 8 0 4 0 8 9 9

1 1 2 3 9 2 3 1

0 5 1 3 2 1 1 3

1 1 1 1 0 0 1 1

2 5 0 7 1 9 7 9

2 0 0 8 2 4 0 1

3 3 9 9

8 4 9 9

5 3 2 3

5 8 9 9
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Unpooling
Upsampling

• Input layer S
– image of size I by J with F features: I×J×F

– …

• Unpooling kernel
– pooling function, e.g. max, mean, stochastic, …

– size and strides 

• Output layer D
– increased spatial size

– same depth

Src
32×32×F

Dst
64×64×F

2×2 with 
stride 2

0 0 0 3 0 0 0 0

0 3 0 3 0 9 0 9

0 8 0 4 0 0 9 9

0 0 0 0 9 0 0 0

0 5 0 3 2 0 0 3

0 0 0 0 0 0 0 0

0 5 0 0 0 9 0 9

0 0 0 8 0 0 0 0

3 3 9 9

8 4 9 9

5 3 2 3

5 8 9 9

2×2 stride 2×2 
max unpool

Max values at max positions that were originally 
found during pooling. Zeroes at non-max positions. 
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Unpooling
Upsampling

• Input layer S
– image of size I by J with F features: I×J×F

– …

• Unpooling kernel
– pooling function, e.g. max, mean, stochastic, …

– size and strides 

• Output layer D
– increased spatial size

– same depth

Src
32×32×F

Dst
64×64×F

2×2 with 
stride 2

3 3 3 3 9 9 9 9

3 3 3 3 9 9 9 9

8 8 4 4 9 9 9 9

8 8 4 4 9 9 9 9

5 5 3 3 2 2 3 3

5 5 3 3 2 2 3 3

5 5 8 8 9 9 9 9

5 5 8 8 9 9 9 9

3 3 9 9

8 4 9 9

5 3 2 3

5 8 9 9

2×2 stride 2×2 
max unpool

Max values at all positions. 
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Dilated Convolutions

• Convolution

• 8-dilated convolution

• Dilation helps to increase the receptive field of the kernel without 
increasing the number of unknowns in the kernel.

• Similar effect as pooling followed by convolution.
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Transposed Convolution

• Sometimes also called fractionally-strided convolution layer or 
deconvolution layer

• Deconvolution layer is a very unfortunate name and should rather 
be called a transposed convolutional layer.

F times 
3×3×G

Src
32×32×G

Dst
64×64×F Transposed convolution with stride 2

Convolution with stride 2
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Depth Concatenation

• N input layers Sn

– vector of size I with Fn features: I×Fn

– image of size I by J with Fn features: I×J×Fn

– volume of size I by J by K with Fn features: I×J×K×Fn

– …

• Output layer D
– same spatial dimensions as input layer

– G = F1+F2+…+FN features

Src1

64×64×F1

Dst
64×64×G

Src2

64×64×F2

+ +    …..      =



26

U-Net1

3 x 3 Convolution, ReLU

2 x 2 Max. Pooling
2 x 2 Upsampling
Depth Concatenate

1 x 1 Convolution, ReLU

Input:

Output:

384 × 256 × 4

12 × 8 × 480

24 × 16 × 320

48 × 32 × 160

96 × 64 × 80

192 × 128 × 40

6 × 4 × 960

Concatenative skip connection

1O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for biomedical image segmentation. Proc. MICCAI:234-241, 2015. 
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U-Net Example: The Deep Dose Estimation (DDE)
Thorax, tube A, 120 kV, no bowtie

CT image First order dose

MC ground truth DDE Relative error

C =   0% 
W = 40%

MC DDE

48 

slices
1 h 0.25 s

whole 

body
20 h 5 s

MC uses 16 CPU kernels
DDE uses one Nvidia Quadro P600 
GPU

DDE training took 74 h for 300 epochs, 
1440 samples, 48 slices per sample

J. Maier, L. Klein, E. Eulig, S. Sawall, and M. Kachelrieß. Real-time estimation of patient-specific dose distributions for medical CT 
using the deep dose estimation. Med. Phys. 49(4):2259-2269, April 2022. Best Paper within Machine Learning at ECR 2019!
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Monte Carlo (180 min) Deep Dose Estimation (2 s) Percentage Error

J. Maier, L. Klein, E. Eulig, S. Sawall, and M. Kachelrieß. Real-time estimation of patient-specific dose distributions for medical CT 
using the deep dose estimation. Med. Phys. 49(4):2259-2269, April 2022. Best Paper within Machine Learning at ECR 2019!

Compute times as of 2021
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Generative Adversarial Network1 (GAN)

• Useful, if no direct ground truth (GT) is available, the training data 
are unpaired, unsupervised learning

Counterfeiter
Generator G

Treasury
Data pool

generate
fake currency

$

Police
Discriminator D

true = 1, fake = 0
sigmoid in-between

detect
fake currency

provide
true data

1I. Goodfellow et al. Generative Adversarial Nets, arXiv 2014
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Generative Adversarial Network (GAN)

• Typical loss function and minimax game:

• Conditional GAN1

– Conditional GANs sample the generator input x not from a uniform distribution but  
from a conditional distribution, e.g. noisy CT images.

– Need some measure to ensure similarity to input distribution (e.g. pixelwise loss added 
to the minimax loss function) 

• Cycle GAN2

– Two GANs (X → Y and Y → X)

– Demand cyclic consistency, i.e.
x = GX(GY(x)) and y = GY(GX(x))

1Isola et al. 2017
2Zhu et al., 2017

X Y

GY

GX

DYDX
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Example: Inpainting

Original CNN with MSE only CNN with GAN

Eulig, Kachelrieß et al. RSNA 2018
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GAN Example: Noise Removal with GAN
• Task: Reduce noise from low dose CT images.

• A conditional generative adversarial networks (GAN) is used

• Generator G: 

– 3D CNN that operates on small cardiac CT sub volumes

– Seven 3×3×3 convolutional layers yielding a receptive field of 15×15×15 voxels for each destination voxel

– Depths (features) from 32 to 128

– Batch norm only in the hidden layers

– Subtracting skip connection

• Discriminator D:

– Sees either routine dose image or a generator-denoised low 
dose image 

– Two 3×3×3 layers followed by several 3×3 layers with varying
strides

– Feedback from D prevents smoothing.

• Training data:
– 120 kV

– Unenhanced (why?) patient data acquired with Philips Briliance iCT 256.

– Two scans (why?) per patient, one with 0.2 mSv and one with 0.9 mSv effective dose.

J. Wolterink, T. Leiner, M. Viergever, and I. Išgum. Generative Adversarial Networks for Noise 
Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.
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Low dose image (0.2 mSv)

GAN Example: Noise Removal with GAN

J. Wolterink, T. Leiner, M. Viergever, and I. Išgum. Generative Adversarial Networks for Noise 
Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.
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iDose level 3 reconstruction (0.2 mSv)

GAN Example: Noise Removal with GAN

J. Wolterink, T. Leiner, M. Viergever, and I. Išgum. Generative Adversarial Networks for Noise 
Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.



38

Denoised low dose image (0.2 mSv)

GAN Example: Noise Removal with GAN

J. Wolterink, T. Leiner, M. Viergever, and I. Išgum. Generative Adversarial Networks for Noise 
Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.
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Normal dose image (0.9 mSv)

GAN Example: Noise Removal with GAN

J. Wolterink, T. Leiner, M. Viergever, and I. Išgum. Generative Adversarial Networks for Noise 
Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.
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Loss Function

• The neural network coefficients (weights and biases) c are chosen by 
minimizing a loss function (cost function)

with xn being the training data input, y(c, xn) being the network 
output, and yn being the so-called labels, i.e. the training target, and 
N being the number of training samples.

• An example for such a loss function is the MSE loss
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Gradient Descent − A Method to find L‘s Minimum

• Walk along the direction of the negative gradient

• Steepest descent

• Learning rate 

• Easy to understand, but not optimal

• Methods in use
– Batch gradient descent

– Sochastic gradient descent

– Mini-batch gradient descent

– Conjugate gradient descent

– Quasi Newton methods

– Momentum methods

– …
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Toy Example
Nested scalar functions f(c, x) with unknown coefficients c

Loss
Function

Intermediate 
Values

Desired 
Gradients
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Toy Example
Nested scalar functions f(c, x) with unknown coefficients c

Loss
Function

Intermediate 
Values

Desired 
Gradients

Backpropagation
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Toy Example 2
Nested vector-valued functions f(c, x) with unknown coefficients vectors c

Loss
Function

Intermediate 
Values

Desired 
Gradients
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Toy Example 3
Backprojection of convolved CNN-preprocessed rawdata with unknown c1

Loss
Function

Intermediate 
Values

Desired 
Gradients

= image = 2  reconstructed minus target image
backprojection derived wrt the 

m-th sinogram value, i.e.
image where pixel n holds the 

intersection of ray m with pixel n

= forward projection of image L3

= convolution of L2 with RamLak kernel

convolution derived wrt the
l-th sinogram value, i.e.

sinogram where pixel m holds 
the convolution kernel entry m-l
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Gradient Descent

For each epoch:

Shuffle the N data samples

For each batch (batch size B):

For each data sample xb of the current batch:

Calculate the loss function’s gradient

wrt the unknowns c by backpropagation.

Now, update the network parameters (weights, biases, etc.):

B = 1 : stochastic gradient descent
B = N : gradient descent
else : batch gradient descent
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Optimization Algorithms

SGD with Momentum: Add fraction of past update vector to current update vector

Nesterov Accelerated Gradient (NAG): Compute gradients with respect to the 
approximate future position of parameters

Adagrad: Adapt updates to each individual parameter
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Optimization Algorithms

Adadelta: Improve on Adagrad by restricting the window of past time steps to some 
fixed window → No vanishing gradients

Additionally, perform normalization of gradients → No learning rate needed

RMSprop: Identical to Adadelta, without normalization. Adapt learning rate with 
exponentially decaying average of past squared gradients.

Adaptive Moment Estimation (Adam): Momentum for first, and second order moment 
(mean and variance) of gradients
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Underfitting



54

Fitting
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Overfitting
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Fitting

underfit reasonable overfit
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Overfitting

• Assume our training data result from sampling the function f(x) 
= 2x at a given number of points. 

• Since the sampling might include some random noise, the 
samples slightly deviate from the function f(x) = 2x.

• A 9th order polynomial perfectly fits the training data, but fails to 
appropriately predict test data such as x = 0.25 for instance.

0

2

4

6

8

10

12

0 1 2 3 4 5 6

Sample points

9th order polynomial fit, 10 data points

Linear fit, 10 data points
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Regularization
Increase of training data

• The increase of the amount of training data makes the network more 
robust against single deviations.

• The training data can also be increased artificially.

• Similar results can be observed if the polynomial is fitted to 100000 
samples.

Coefficients Linear 9th order

c0 -0.00295 0.03343

c1 2.000325 1.904762

c2 0.079125

c3 -0.02262

c4 0.000435

c5 -4.96E-05

c6 0.000339

c7 -4.25E-05

c8 -9.19E-06

c9 1.43E-06

0

2

4

6

8

10

12

0 1 2 3 4 5 6

Sample points

9th order polynomial fit, 10000*10 data points

Linear fit, 10000*10 data points
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Regularization
Penalizing large weights

• Modification of the cost function to penalize large weight (i.e. 
quadratic penalty):                      

• If a certain weight is large, the output strongly depends on the input 
of that weight.

Coefficients Linear 9th order

c0 -0.00295 0.447558

c1 2.000325 0.575279

c2 0.665781

c3 0.562606

c4 0.049884

c5 -0.45894

c6 0.186099

c7 -0.01496

c8 -0.00342

c9 0.000471

0

2

4

6

8

10

12

0 1 2 3 4 5 6

Sample points

9th order polynomial fit, 10 data points, λ = 1

Linear fit, 10 data points
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Regularization: Dropout

• Dropout is intended to reduce overfitting.

• Dropout randomly (before each mini bach) zeroes activations with 
probability 1-p during training.

• Let D be a Bernoulli random variate with P(D = 1) = p and regard the 
following toy example:

• After training, on inference, the outputs y1, y2, and y3 need to be 
multiplied by p to be equivalent to the training situation, on 
expectation (alternatively divide by p during training).

• Dropout can be realized using dropout layers.
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Batch Normalization
Batch normalization

• normalizes each activation to have zero
expectation and unit variance within the batch

• introduces trainable scale and offset for each
activation (or for each feature map) to, 
potentially, denormalize again

• is part of the model architecture

• reduces the need for dropout

• reduces internal covariate shift and thus
accelerates training

• fixes the means and variances of layer inputs 

• improves gradient flow through the network

• allows for higher learning rates without the risk of divergence

• prevents the net from getting trapped in saturated modes

• makes it possible to use saturating nonlinearities

S. Ioffe and C. Szegedy. Batch Normalization: Accelerating Deep Network Training by Reducing Internal 
Covariate Shift. Proceedings of the 32nd International Conference on Machine Learning, Lille, France, 2015.
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Further Means to Avoid Overfitting

• Choose adequate network architecture

• Preprocess data
– Normalize data (mean, var, …)

– Add prior knowledge (e.g. exp(-x))

• Data augmentation
– Random transformations (mirror, affine, deformable, …)

– Gray value distribution

– Change spatial resolution

– Add noise

– …

• Penalize loss function
– Enforce small weights

– Enforce sparse weights

– …
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Learning Curve

• Training and validation set are part of the training

• Do not use test set for training

• Early stopping (at minimum validation loss)

• Training : Validation : Test     70 : 20 : 10

Test Set

epochs

loss

Training Set

epochs

loss

Validation Set

epochs

loss

Stop here!
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Weight Initialization

• Weights in neural networks should be initialized such that the neurons are not 

saturated (since saturation often decreases the learning rate).

• Assume we have a fully-connected network with 1000 input neurons.

• Let us further assume that half of the input equals 1 and the other half equals 0.

• If the weights and the bias are initialized with Gaussian random numbers with zero 

mean and a standard deviation of 1, the weighted sum                                to the first 

hidden neuron is zero mean Gaussian with standard deviation                               . 

• Thus, it is very likely that              or            and the neuron saturates.

• Therefore, if we have        inputs, an initialization with Gaussian random numbers 

with zero mean and a standard deviation of               would be a better choice.      
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What was not Discussed Here

• Attention mechanism

• Transformer networks

• Diffusion networks

• …
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Thank You!

This presentation will soon be available at www.dkfz.de/ct.

Job opportunities through DKFZ’s international PhD or Postdoctoral Fellowship programs 
(marc.kachelriess@dkfz.de). 

Parts of the reconstruction software were provided by RayConStruct® GmbH, Nürnberg, Germany.
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PART 10:
IS NEWER ALWAYS BETTER?

Denoising benchmark with surprising results
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Low Dose CT Image Denoising

Domain

Image (I) Sinogram (S) Dual (D)

[1] Yuan Y, Zhang YB, Yu HY (2018) “Adaptive nonlocal means method for denoising basis material images […]”. J Comput Assist Tomogr 42:972–981.
[2] Feruglio, P Fumene, C Vinegoni, J Gros, A Sbarbati, and R Weissleder (2010) “Block Matching 3D Random Noise Filtering for Absorption Optical Projection Tomography.” Physics in Medicine and Biology 55 (18): 5401–15.
[3] Jia L, Zhang Q, Shang Y, et al. (2018) “Denoising for low-dose CT image by discriminative weighted nuclear norm minimization”. IEEE Access
[4] Chen, Hu, Yi Zhang, Mannudeep K. Kalra, Feng Lin, Yang Chen, Peixi Liao, Jiliu Zhou, and Ge Wang. 2017. “Low-Dose CT with a Residual Encoder-Decoder Convolutional Neural Network.” IEEE Transactions on Medical Imaging 36 (12): 2524–35.
[5] Yang, Qingsong, Pingkun Yan, Yanbo Zhang, et al.. 2018. “Low-Dose CT Image Denoising Using a Generative Adversarial Network with Wasserstein Distance and Perceptual Loss.” IEEE Transactions on Medical Imaging 37 (6): 1348–57. 
[6] L. Yang, Z. Li, R. Ge, J. Zhao, H. Si and D. Zhang, "Low-Dose CT Denoising via Sinogram Inner-Structure Transformer," in IEEE Transactions on Medical Imaging, vol. 42, no. 4, pp. 910-921, 2023.
[7] Yin, Xiangrui, Qianlong Zhao, Jin Liu, Wei Yang, Jian Yang, Guotao Quan, Yang Chen, Huazhong Shu, Limin Luo, and Jean-Louis Coatrieux. 2019. “Domain Progressive 3D Residual Convolution Network to Improve Low-Dose CT Imaging.” IEEE TMI 38 (12).
[8] Yuan, N., Zhou, J., & Qi, J. (2020). Half2Half: deep neural network based CT image denoising without independent reference data. Physics in Medicine & Biology, 65(21), 215020.
[9] Hong, Zixuan, Dong Zeng, Xi Tao, and Jianhua Ma. 2023. “Learning CT Projection Denoising from Adjacent Views.” Medical Physics 50 (3): 1367–77.
[10] Bera, Sutanu, and Prabir Kumar Biswas. 2023. “Self Supervised Low Dose Computed Tomography Image Denoising Using Invertible Network Exploiting Inter Slice Congruence.” In 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 5603–12.
[11] Baguer, Daniel Otero, Johannes Leuschner, and Maximilian Schmidt. 2020. “Computed Tomography Reconstruction Using Deep Image Prior and Learned Reconstruction Methods.” Inverse Problems 36 (9.

Algorithms

Classical

Deep Learning

Non-local means [1]
(I/S/D) 

BM3D [2]
(I/S)

Total variation [3]
(I/S/D)

Supervised

RED-CNN [4]
(I)

Unsupervised / Self-

supervised

Half2Half [8]
(I/S)WGAN-VGG [5]

(I)

Deep Image Prior [11]
(I)

Sinogram Inner-Structure
Transformer [6]

(D)

DP-ResNet [7]
(D)

…

…

…

Adjacent views [9]
(S)

Inter-slice 
congruence [10]

(I)
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Low Dose CT Image Denoising

Domain

Image (I) Sinogram (S) Dual (D)

[1] Yuan Y, Zhang YB, Yu HY (2018) “Adaptive nonlocal means method for denoising basis material images […]”. J Comput Assist Tomogr 42:972–981.
[2] Feruglio, P Fumene, C Vinegoni, J Gros, A Sbarbati, and R Weissleder (2010) “Block Matching 3D Random Noise Filtering for Absorption Optical Projection Tomography.” Physics in Medicine and Biology 55 (18): 5401–15.
[3] Jia L, Zhang Q, Shang Y, et al. (2018) “Denoising for low-dose CT image by discriminative weighted nuclear norm minimization”. IEEE Access
[4] Chen, Hu, Yi Zhang, Mannudeep K. Kalra, Feng Lin, Yang Chen, Peixi Liao, Jiliu Zhou, and Ge Wang. 2017. “Low-Dose CT with a Residual Encoder-Decoder Convolutional Neural Network.” IEEE Transactions on Medical Imaging 36 (12): 2524–35.
[5] Yang, Qingsong, Pingkun Yan, Yanbo Zhang, et al.. 2018. “Low-Dose CT Image Denoising Using a Generative Adversarial Network with Wasserstein Distance and Perceptual Loss.” IEEE Transactions on Medical Imaging 37 (6): 1348–57. 
[6] L. Yang, Z. Li, R. Ge, J. Zhao, H. Si and D. Zhang, "Low-Dose CT Denoising via Sinogram Inner-Structure Transformer," in IEEE Transactions on Medical Imaging, vol. 42, no. 4, pp. 910-921, 2023.
[7] Yin, Xiangrui, Qianlong Zhao, Jin Liu, Wei Yang, Jian Yang, Guotao Quan, Yang Chen, Huazhong Shu, Limin Luo, and Jean-Louis Coatrieux. 2019. “Domain Progressive 3D Residual Convolution Network to Improve Low-Dose CT Imaging.” IEEE TMI 38 (12).
[8] Yuan, N., Zhou, J., & Qi, J. (2020). Half2Half: deep neural network based CT image denoising without independent reference data. Physics in Medicine & Biology, 65(21), 215020.
[9] Hong, Zixuan, Dong Zeng, Xi Tao, and Jianhua Ma. 2023. “Learning CT Projection Denoising from Adjacent Views.” Medical Physics 50 (3): 1367–77.
[10] Bera, Sutanu, and Prabir Kumar Biswas. 2023. “Self Supervised Low Dose Computed Tomography Image Denoising Using Invertible Network Exploiting Inter Slice Congruence.” In 2023 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), 5603–12.
[11] Baguer, Daniel Otero, Johannes Leuschner, and Maximilian Schmidt. 2020. “Computed Tomography Reconstruction Using Deep Image Prior and Learned Reconstruction Methods.” Inverse Problems 36 (9.

Algorithms

Classical

Deep Learning

Non-local means [1]
(I/S/D) 

BM3D [2]
(I/S)

Total variation [3]
(I/S/D)

Supervised

RED-CNN [4]
(I)

Unsupervised / Self-

supervised

Half2Half [8]
(I/S)WGAN-VGG [5]

(I)

Deep Image Prior [11]
(I)

Sinogram Inner-Structure
Transformer [6]

(D)

DP-ResNet [7]
(D)

…

…

…

Adjacent views [9]
(S)

Inter-slice 
congruence [10]
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Low Dose CT Image Denoising

Q: Which algorithm performs best?

A:
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Flaws of Current Evaluation Protocols

No open-source implementations: Increases 
chance of (un)intentional errors

Inadequate metrics: Standard IQA metrics 
(MSE, SSIM, …) do not correlate well with 
human reader ratings [2]

Unfair hyperparameters: Either no HP 
optimization or limited to subset of 
parameters / methods. Often authors use HPs 
reported in reference publications 
→ Problematic since no consensus dataset

exists

Meanwhile, to keep the reasonable model complexity, we 
reduced 96 filters to 32 filters in each layer. [1]

[1] Fan, Fenglei, Hongming Shan, Mannudeep K. Kalra, Ramandeep Singh, Guhan Qian, Matthew Getzin, Yueyang Teng, Juergen Hahn, and Ge Wang. 2020. “Quadratic Autoencoder (Q-AE) for Low-Dose CT Denoising.” IEEE Transactions on Medical Imaging.
[2] K. Ohashi, Y. Nagatani, M. Yoshigoe, K. Iwai, K. Tsuchiya, A. Hino, Y. Kida, A. Yamazaki, and T. Ishida, “Applicability evaluation of fullreference image quality assessment methods for computed tomography images,” Journal of Imaging Informatics in Medicine, vol. 
36, no. 6, pp. 2623–2634, Dec. 2023.
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Benchmark Setup

Dataset

Open-source LDCT and Projection Dataset [1] with 150 CT scans of 
abdomen, head, and chest at routine dose levels. Low dose images 
were simulated at 25% dose for abdomen/head and 10% dose for chest

All tested methods use the same train/validation set and were 
evaluated on the same test set

[1] McCollough, Cynthia, Baiyu Chen, David R Holmes III, Xinhui Duan, Zhicong Yu, Lifeng Yu, Shuai Leng, and Joel Fletcher. 2020. “Low Dose CT Image and Projection Data.” The 
Cancer Imaging Archive. https://doi.org/10.7937/9NPB-2637. 
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Benchmark Setup

LDCT Denoising Algorithms

• CNN-10 (2017)

• RED-CNN (2017)

• ResNet (2018)

• WGAN-VGG (2017)

• QAE (2019)

• DU-GAN (2021)

• TransCT (2021)

• Bilateral (2022)

Standard CNNs trained with 
pixelwise losses

CNNs trained with adversarial 
losses

Specialized architectures trained 
with pixelwise losses
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Benchmark Setup

• Hyperparameter Optimization
– Rigorous HP optimization including the 

weighting factors of loss function terms

– 50 iterations of sequential model-based 
optimization (SMBO) using Gaussian 
processes and expected improvement as 
acquisition function

– As metric to optimize we use SSIM on 
validation dataset

• Retrain each method 10 times with
– optimal HPs and

– different random seeds
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Benchmark Setup

Metrics

• Standard metrics: SSIM, PSNR, Visual 
information fidelity (VIF)

• Clinically relevant image properties: 
Radiomic feature similarity (RFS)

1. Automatically segment organs in high-
dose scan (𝑠)

2. Compare features on high-dose scan 
with those on denoised scans

: Radiomic features

: Algorithms

Normalized radiomic features 
for some algorithm 𝑖 on scan 𝑠

[1]

[1] Mayerhoefer, M. E., Materka, A., Langs, G., Häggström, I., Szczypiński, P., Gibbs, P., & Cook, G. (2020). Introduction to Radiomics. Journal of nuclear medicine : official publication, 
Society of Nuclear Medicine, 61(4), 488–495.
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Highest SSIM across all 
head slices and methods

Lowest SSIM across all 
head slices and methods

Results
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Results
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Results

Bold: Significantly better than previously best method
Italics: Significantly worse than previously best method

SSIM, PSNR, VIF



84

Results

Radiomic Feature Similarity (RFS)

Bold: Significantly better than previously best method
Italics: Significantly worse than previously best method
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Summary & Conclusions

• Revisited some of the deep learning-based methods 
for low dose CT image denoising

• Newer algorithms do not consistently outperform 
earlier ones both in terms of standard IQA metrics 
and the proposed radiomic feature similarity

→ Highlights the need for more rigorous and fair 
evaluation of novel deep learning based denoising 
methods for LDCT image denoising*

Important research direction: Develop metrics that 
capture the robustness of algorithms wrt anatomical 
details

[1] G. Melis, C. Dyer, and P. Blunsom, “On the state of the art of evaluation in neural language models,” in ICLR, 2018. 
[2] K. Musgrave, S. Belongie, and S.-N. Lim, “A metric learning reality check,” in ECCV, 2020.
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*Similar to reality checks in related fields [1, 2]
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