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Getting Ready

 Wrong:

— “The aim is to develop and train a neural network that solves problem XYZ.”

 Even wronger:
— “Problem XYZ is typically well solved with classical algorithms. | want to solve it with Al.”

* Right:
— “The aim is to solve problem XYZ.”

— “Literature shows N classical and M deep learning-based approaches solving XYZ.
The classical ones are inaccurate because XYZ is very complex.
The Al-based solutions are much more promising but hallucinate too much.”

— “Thus, we want to develop a new data-driven solution.”
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Important, but boring

NOISE REDUCTION



Negative Example

« 3-layer CNN uses low dose and corresponding normal dose image
patches for training

Low dose ASD-POCS

e

Hu Chen, Yi Zhan, Weihua Zhang, Peixi Liao, Ke Li, Jiliu Zhou, and Ge Wang. Low-dose CT via convolutional
neural network. Biomedical Optics Express 8(2):278381, February 2017.



Noise Removal: Canon‘s AiCE

« Advanced intelligent Clear-1Q Engine (AICE)

« Trained to restore low-dose CT data to match the properties of FIRST,
the model-based IR of Canon.

 FIRST is applied to high-dose CT images to obtain high fidelity labels.

Training AiCE — Deep Learning

Network Training

K. Boedeker. AiCE Deep
Learning Reconstruction:
Bringing the Power of Ultra
High Resolution CT to
Routine Imaging.
Whitepaper, Canon, 2019.

dkfz.



U =100 kV

CTDI = 0.6 mGy
DLP =24.7 mGy-cm
Des = 0.35 mSv

M Courtesy of
_ : Radboud ,
FIRST Lung (tull'itérative) AICE Lung (deep Tearning theaNetﬁEHSL“dcs



CT Vendor-Based DL Denoising Algorithms

Name Vendor Source Labels Comments
: Low dose AIDR3D images | FIRST reconstruction of
AICE Canon S
(by noise injection) normal dose data
N Low dose rawdata/images FBP reconstruction of Pro_b ol s (B3 Ia_yer.
True Fidelity e]= B ; Said to preserve noise
(by noise injection) normal/high dose data
texture.
: . Low dose images FBP reconstruction of
Precise Image Philips S
(by noise injection) normal dose data
- Siemens - -
: Low dose sinograms Iterative reconstruction Neural network
AlIR United DI ;
(by noise injection?) of normal dose data regularizes IR




Interesting, but misleading

SPATIAL RESOLUTION ENHANCEMENT



AIDR 3D PIQE

Canon PIQE

* Precise IQ Engine (PIQE).

* Trained on data from Canon’s Precision high '
spatial resolution CT 4

« Converts images from Canon’s standard
spatial resolution scanners (e.g. Aquilion ONE / f
PRISM edition) to look like high spatial *
resolution images.

Warning:
Blooming reduction might
change the calcium score,
if Agatston scoring is used.

600 HU

W = 150 HU ‘

/

Image courtesy of Canon Medical Systems dkfz
o




Surprising, but well performing

SCATTER ESTIMATION - FAST PRHYSICS



Deep Scatter Estimation (DSE)

WILEY

MEDICAL PHYSICS

The International Journal of Medical Physics Research and Practice

Congratulations — your work was one of the top
downloaded in recent publication history!

TOP DOWNLOADED PAPER 2018-2019

CONGRATULATIONS TO
Dear MARC,

Marc Kachelriess
e are excited to share that your research, published in Med
mong the top 10% most downloaded papers!

whose paper has been recognized as
\, ¢ Real-time scatter estimation for medical CT using the dee
h

one of the most read in
scatter estimation: Method and robustness analysis wit
respect to different anatomies, dose levels, tube voltages, an

data truncation

d

OP DOWNLOADED PAPER 2018-2019

CONGRATULATIONS TO

Joscha Maier

whose paper has been recognized as
one of the most read in

Medical Physics

J. Maier, M. KachelrieR3 et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. KachelrieB et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Monte Carlo Scatter Estimation

« Simulation of photon trajectories according to physical interaction
probabilities.

« Simulating a large number of photr~ *

the actual scatter distri-" 10 hOU\'s

approximates

_ul .|p|e'[e Scatter
distribution




Deep Scatter Estimation

Network architecture & scatter estimation framework

Output:
Input: ] 384 x 256 x 4 scatter estimate

‘ 10 seconds (=

.~ data sel
;)no(;/v gs&rir;gltiir;gn per '\'.0

Upsampling
of operator B to original
T(p) =pe P O size
48 x 32 x 160
24 x 16 x 320
O- 3 x 3 Convolution, RelLU
12x8x 480 » 1 x 1 Convolution, ReLU
O 2 x 2 Max. Pooling
2 x 2 Upsampling
6 x 4 x 960 O~ Depth Concatenate

Projection data

J. Maier, M. KachelrieR3 et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.

J. Maier, M. KachelrieB3 et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Results on Simulated Projection Data

Primary Scatter ground (Kernel = GT) (Hybrid - GT) (DSE - GT)
intensity truth (GT)

View #1 ) .
meae mean
Ak absolute
percenta & erGeRiase percentag

error
0 VE over
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View #2

View #3

View #4

View #5
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C=0%, W =50%

I C=0%, W= 50].

DSE trained to estimate scatter from primary plus scatter: High accuracy



Reconstructions of Simulated Data

; Kernel-Based Hybrid Scatter Deep Scatter
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C=0HU, W=1000 HU

J. Maier, M. Kachelrief3 et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.

J. Maier, M. KachelrieB3 et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Testing of the DSE Network for Measured Data
(120 kV)

DKFZ table-top CT

Measurement to be corrected

X-ray source

N i Detector
S
« Measurement of a head phantom at Ground truth: slit scan
our in-house table-top CT. |
: Colllmatorl m
« Slit scan measurement serves as . T
round truth 74
g . X-ray source » L -
Detector

J. Maier, M. KachelrieR3 et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.

J. Maier, M. KachelrieB3 et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Reconstructions of Measured Data

Parameters of the two comparison methods trained
in the same way as those of DSE: same data,
same loss function, same optimization algorithm.

l l DSE

Kernel-Based Hybrid Scatter Deep Scatter
Scatter Estimation Estimation Estimation

Slit Scan No Correction

CT Reconstruction

Difference to slit scan

C=0HU, W=1000HU

J. Maier, M. Kachelrief3 et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.

J. Maier, M. KachelrieB3 et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Challenging, but relevant

MOTION COMPENSATION



Deep Cosmetic Motion Artifact Reduction

* Image-based correction
= cosmetic correction
= similar to pic beauty and others

 May not e the mOStg)nﬁdgp{f do that‘-

GAN-genereted

Reference

Reference

.

Zhang et al. Motion artifact removal in coronary CT angiography based
on generative adversarial networks. EuRad 33:43-53, 2023.




Partial Angle-Based Motion Compensation
(PAMoCo)

Animated rotation time = 100 % real rotation time



Partial Angle-Based Motion Compensation
(PAMoCo)




Partial Angle-Based Motion Compensation
(PAMoCo)

Motion vector field s1(r)

Apply motion vector fields (MVFs) to partial angle reconstructions



Deep Partial Angle-Based Motion
Compensation (Deep PAMoCo)

PARs centered Neural network to predict Reinsertion of patch into
around coronary parameters of a motion model initial reconstruction
artery

8 3N1;N16 16 Fully B

Ni2 x Ni2 connected g4
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’ 3 % 3 x 3 Convolution, Batch norm, ReLU . 2 x 2 x 2 Max pooling :}3' Flatten ’:‘ Dropout (25 %)

Spatial
transformer

Application of the motion model to
the PARs via a spatial transformer

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelriel3. Deep learning-based

coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.



Patient 1

C=0HU, W=1400 HU

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrie. Deep learning-based

coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.



Patient 2

C=0HU, W=1600 HU

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelriel3. Deep learning-based

coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.



MoCo for CBCT (Slow Rotating CT)

« Gating does only work on regular breating. Otherwise:

S

« Idea: Just use a single x-ray projection as a time point for motion

estimation: Patient S
Re




Training Workflow of Deep SAMoCo

| ] \ ' |
y /
Randomly select -y @ g
- projectign i from A Phase A Phase B Calculate DVF from

- projection j from B Random patient, random A and B
and backproject.

|
w

phase A to phase B
(Demons, Deeds,
VoxelMorph, ...)
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of projection j

Network input Network (modified U-Net) Training labels

varian All images shown here are volumes of size 5123.



VUMC_4DThorax

Red: RPM signal (external signal — not used for recon)
varian Yellow: Diaphragm motion (intrinsic signal — from PAMoCo recon)



MSK 1

Red: RPM signal (external signal — not used for recon)
varian Yellow: Diaphragm motion (intrinsic signal — from PAMoCo recon)



Upcoming in

2025

(yet to be developed)

Imaging (t < 0) Treatment (t > 0) t

varian dkfz.




Lots of missing data

DETRUNCATION



Evaluation of novel Al-based extended field-of-view CT reconstructions

Gabriel Paiva Fonseca®”
Department of Radiation Onco {MAASTRO), GROW School for Oncology and Developmental Biology, Maastricht University
Medical Centre+, Maastricht 6229 ET, The Netherlands

Matthias Baer-Beck* Eric Fournie and Christian Hofmann
Siemens Healthcare GmbH, Forchheim, Germany

llaria Rinaldi, Michel C Ollers, Wouter J.C. van Elmpt and Frank Verhaegen
Department of Radiation Oncology (MAASTRQ), GROW School for Oncology and Developmental Biology, Maastricht University
Medical Centre+, Maastricht 6229 ET, The Netherlands

(Received 28 February 2021; revised 27 April 2021; accepted for publication 30 April 2021;
published 31 May 2021)

Measured \ Virtual CT
CT raw data Reconstruction . — ) Forward raw data
with de- 3 ’ S 7 projection:
truncation. Only a 54 Simulate virtual

measured data is CT scan.
backprojected. Initial Reconstruction CNN Estimate of the

Patient

Mixing: Measured data where
available, virtual CT data outside
the detector

Final reconstruction

Final Reconstruction

Fonseca, Gabriel Paiva, et al. "Evaluation of novel Al-based extended field-of-view CT reconstructions."
Medical Physics (2021).




Network Input Image Network Output Image HDeepFoV Result Image

Fonseca, Gabriel Paiva, et al. "Evaluation of novel Al-based extended field-of-view CT reconstructions.
Medical Physics (2021).




The 8th International Conference on Image Formation in X-Ray Computed Tomography

Latent Space Reconstruction and its Application to
CT Detruncation: Latent Detruncation

Anton Kabelac, Elias Eulig, Joscha Maier, Michael Knaup, and Marc Kachelrie3

Abstract—Truncation in CT occurs when parts of the patient
aterally exceed the field of measurement (FOM). This is typically
he case for obese patients in clinical CT and for most patients
n CBCT unless CBCT uses a shifted detector or a very
arge detector. Conventional reconstruction algorithms (analytic,
terative, deep learning) will also suffer from severe truncation
artifacts. Correcting for these artifacts within the FOM is easy,
ut providing a good reconstruction quality of the parts that lie
putside the FOM is hard and has never been achieved, yet.

In this work, we propose a novel deep learning-based approach
alled the latent space reconstruction (LSR). We apply LSR to the

(FOV) extension, have been proposed. Early techniques for
the reconstruction of incomplete projection data primarily fall
roughly into two groups. The first group is made up of data
completion methods, like more or less simple extrapolation
algorithms. Reference [1] used the size and slope of a wa-
ter cylinder fitted into each projection to estimate suitable
projection extension. Other studies used cosine fitting and
elliptical extrapolation, sometimes combined with consistency
conditions, to estimate a convex hull of the patient in order to




What Is an Autoencoder?

In and output domain are the same, here Xx.
Bottleneck z enforces the encoder and decoder to do a good job.

Examples:
— Principal component analysis (linear autoencoder), lossless
— PCA with dimensionality reduction (nonlinear due to clipping), lossy
— Image compression and decoding, e.g. jpeg, lossy

Latent space typically not interpretable.




What Is a Variational Autoencoder?

Make latent space regular.

Allow to sample in latent space from a given distribution, here:
normal distribution.

(,0) 2~ N(p,0)
| |

The VAE is a generative model.

It allows to generate new data by sampling new values from the
normal distribution.




VAE Data & Training

* Data:
— Clinical data acquired with a Siemens Somatom Force CT
— 85 adult patient scans
— 0.6 mm slice thickness and 0.69 to 0.98 mm axial voxel spacing
— Randomly split into training, validation and testing (70:15:15)

« Training:
— Trained for 150 epochs
— Learning rate 0.001

— Adam optimizer
— Hybrid loss function consisting of VAE loss, perceptual loss and WGAN generator loss

Coronal Sagittal

L = Lpixel—wise + 6 LKullback—Leibler + Y Lperc + 0 LWGAN



L SR for Detruncation

Train VAE on very many untruncated CT images f,
0 = arg meinZHD(N(E(fn(r)))) — fn(7)]

Find latent space point z to best match the truncated rawdata p

Z = arg mzmHXD(Z) i p”lScm

Forward project D(z) and use the resulting rawdata to extrapolate the
measured rawdata.

Do a final image reconstruction of the detruncated sinogram.



Image Domain Experiment

Purely image domain
Hand-crafted mask

.3

Minimizing
z = arg m;nHD(Z) — M(r)f(r)]

Results see rhs.

Target * Mask

Prediction




Search in Latent Space

« Optimization of latent space
vector in projection domain

< — arg m;nHXD(z) _p||15cm
* Video showing intermediate

Images of selected iteration
steps.

Masked (15 cm)
Target Sinogram

» »

Target Image Target Sinogram

Q T <
a: o
Generated Masked (15 cm) Difference to
SRS Sinogram Generated Sinogram ~ Target Sinogram




Reference Methods

U-Net-based Sinogram Extension
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3x3 conv + BN + ReLU =» 2x2 max pool skip connection =» 3x3 up-conv + BN + ReLU =» 1x1 conv

J. HJ. Ketola, et al., Deep learning-based sinogram extension method for interior computed tomography, dkf
Medical Imaging: Physics of Medical Imaging. Vol. 11595. International Society for Optics and Photonics (2021) Z.



Results

Ground Truth ADT (classical) U-Net (Ketola et al.) LSR (ours)

AT

MAEs: 127 HU, 272 HU MAEs: 31 HU, 121 HU MAEs: 10 HU, 69 HU

F

\\\ : il ] i f : - 3 . :
5 \@ 0] HW e MAEs: 24 HU, 260 HU MAEs: 60 HU, 218 HU MAEs: 6 HU, 95 HU

R

C =50 HU, W = 1200 HU. dikfz.



Tips for Researchers

* Do not feel pressed to invent new networks
— Regard existing networks as a computational tool (such as, e.g., the Fourier transform).
— Many existing networks are useful for other purposes than their original one.
Some uninformed reviewers may reject your manuscript:
» R: “This network is not new. This is why | recommend rejection.”
» A: “Why should it be? Fourier transforms can also be used. They are far from being new!”

* Perform ablation studies
— Change parameters of your network (e.g. size, depth, etc.)
— Change training parameters (learning rate, batch size, dropout rate, etc.)
— Change the amount of training data

« Existing solutions
— Compare with prior approaches, also with non-Al ones, in particular with the gold standard
— Optimize prior approaches with the same effort
» Same training data (also to fit the parameters of non-Al algorithms)
» Same loss function
» Same minimization algorithm



More Tips for Researchers

Ensure all the data that have been acquired make it into the image.
Do not exaggerate (e.g. noise reduction)

Question whether the solution is really based on measured
Information or whether it is just nicely looking (— hallucinations)

Unphysical but nicely looking:
— Converting 80 kV images into 140 kV ones
— Converting sparse view into full view images
— Generating contrast-enhanced images from unenhanced ones

— Removing motion artifacts from a cardiac CT image by editing the image
— Ground truth 48 views Proposed

x A




This presentation will soon be
availlable at www.dkfz.de/ct.

Job opportunities through DKFZ’s
international PhD or Postdoctoral
Fellowship programs
(marc.kachelriess@dkfz.de).

Parts of the reconstruction software
were provided by RayConStruct®
GmbH, Nirnberg, Germany.
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