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Getting Ready

• Wrong:
– “The aim is to develop and train a neural network that solves problem XYZ.”

• Even wronger:
– “Problem XYZ is typically well solved with classical algorithms. I want to solve it with AI.”

• Right:
– “The aim is to solve problem XYZ.”

– “Literature shows N classical and M deep learning-based approaches solving XYZ.
The classical ones are inaccurate because XYZ is very complex.
The AI-based solutions are much more promising but hallucinate too much.”

– “Thus, we want to develop a new data-driven solution.”
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NOISE REDUCTION
Important, but boring
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Negative Example

• 3-layer CNN uses low dose and corresponding normal dose image 
patches for training

Normal dose Low dose ASD-POCS

KSVD BM3D 3-Layer CNN

Hu Chen, Yi Zhan, Weihua Zhang, Peixi Liao, Ke Li, Jiliu Zhou, and Ge Wang. Low-dose CT via convolutional 
neural network. Biomedical Optics Express 8(2):278381, February 2017.
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Noise Removal: Canon‘s AiCE

• Advanced intelligent Clear-IQ Engine (AiCE)

• Trained to restore low-dose CT data to match the properties of FIRST, 
the model-based IR of Canon.

• FIRST is applied to high-dose CT images to obtain high fidelity labels.

K. Boedeker. AiCE Deep 
Learning Reconstruction: 
Bringing the Power of Ultra 
High Resolution CT to 
Routine Imaging. 
Whitepaper, Canon, 2019.



FBP FC52 (analytical recon) AIDR3De FC52 (image-based iterative)

AiCE Lung (deep learning)FIRST Lung (full iterative)

Courtesy of 
Radboudumc, 

the Netherlands

U = 100 kV
CTDI = 0.6 mGy
DLP = 24.7 mGycm
Deff = 0.35 mSv
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CT Vendor-Based DL Denoising Algorithms

Name Vendor Source Labels Comments

AiCE Canon
Low dose AIDR3D images

(by noise injection)

FIRST reconstruction of 

normal dose data

True Fidelity GE
Low dose rawdata/images

(by noise injection)

FBP reconstruction of 

normal/high dose data

Probably uses BP layer. 

Said to preserve noise 

texture.

Precise Image Philips
Low dose images 

(by noise injection)

FBP reconstruction of 

normal dose data

- Siemens - -

AIIR United
Low dose sinograms

(by noise injection?)

Iterative reconstruction 

of normal dose data

Neural network 

regularizes IR
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SPATIAL RESOLUTION ENHANCEMENT
Interesting, but misleading
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W = 150 HU

Canon PIQE

• Precise IQ Engine (PIQE).

• Trained on data from Canon’s Precision high 
spatial resolution CT

• Converts images from Canon’s standard 
spatial resolution scanners (e.g. Aquilion ONE / 
PRISM edition) to look like high spatial 
resolution images.

Image courtesy of Canon Medical Systems

AIDR 3D PIQE

6
0

0
 H

U

0.3 mm

0.5 mm

Warning:

Blooming reduction might 

change the calcium score,

if Agatston scoring is used.

0.4 mm
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SCATTER ESTIMATION - FAST PHYSICS
Surprising, but well performing
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Deep Scatter Estimation (DSE)

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Monte Carlo Scatter Estimation

• Simulation of photon trajectories according to physical interaction 
probabilities.

• Simulating a large number of photon trajectories well approximates 
the actual scatter distribution.

Scatter distribution of an 
incident needle beam

Complete scatter 
distribution
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Deep Scatter Estimation
Network architecture & scatter estimation framework

3 x 3 Convolution, ReLU

2 x 2 Max. Pooling
2 x 2 Upsampling
Depth Concatenate

1 x 1 Convolution, ReLU

Input:

Output:
scatter estimate 384 × 256 × 4

12 × 8 × 480

24 × 16 × 320

48 × 32 × 160

96 × 64 × 80

192 × 128 × 40

6 × 4 × 960Projection data

Downsampling
and application 

of operator
Upsampling
to original 

size

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Results on Simulated Projection Data
Scatter ground 

truth (GT)

Primary 

intensity

(Kernel – GT) 

/ GT 

(Hybrid - GT)

/ GT

(DSE – GT)    

/ GT

View #1

View #2

View #3

View #4

View #5

C = 0%, W = 50%C = 0%, W = 50%C = 0%, W = 50%C = 0.5, W = 1.0 C = 0.04, W = 0.04

14.1%
mean 

absolute
percentage 

error
over
all

projections

7.2%
mean 

absolute 
percentage

error
over
all

projections

1.2%
mean 

absolute
percentage 

error
over
all

projections

DSE trained to estimate scatter from primary plus scatter: High accuracy
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Reconstructions of Simulated Data

No Correction
Kernel-Based 

Scatter Estimation
Hybrid Scatter 

Estimation
Deep Scatter 
EstimationGround Truth
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C = 0 HU, W = 1000 HU

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Testing of the DSE Network for Measured Data 
(120 kV)

• Measurement of a head phantom at 
our in-house table-top CT.

• Slit scan measurement serves as 
ground truth.

X-ray source

Detector

Measurement to be corrected

X-ray source

Detector

Ground truth: slit scan

Collimator

DKFZ table-top CT

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Reconstructions of Measured Data

No Correction
Kernel-Based 

Scatter Estimation
Hybrid Scatter 

Estimation
Deep Scatter 
EstimationSlit Scan
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C = 0 HU, W = 1000 HU
J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.

J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.

Parameters of the two comparison methods trained 
in the same way as those of DSE: same data, 

same loss function, same optimization algorithm.

DSE
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MOTION COMPENSATION
Challenging, but relevant
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Deep Cosmetic Motion Artifact Reduction

• Image-based correction 
= cosmetic correction
= similar to pic beauty and others

• May not be the most confident way to go

Zhang et al. Motion artifact removal in coronary CT angiography based
on generative adversarial networks. EuRad 33:43-53, 2023.
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Partial Angle-Based Motion Compensation 
(PAMoCo)

Animated rotation time = 100 × real rotation time
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Partial Angle-Based Motion Compensation 
(PAMoCo)
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Partial Angle-Based Motion Compensation 
(PAMoCo)

Apply motion vector fields (MVFs) to partial angle reconstructions

Motion vector field
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Spatial 
transformer

Deep Partial Angle-Based Motion 
Compensation (Deep PAMoCo)

PARs centered 
around coronary 
artery

Neural network to predict 
parameters of a motion model

Application of the motion model to 
the PARs via a spatial transformer

Reinsertion of patch into 
initial reconstruction

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrieß. Deep learning-based 
coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.
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Patient 1

C = 0 HU, W = 1400 HU

Original Deep PAMoCo

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrieß. Deep learning-based 
coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.
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Patient 2

C = 0 HU, W = 1600 HU

Original Deep PAMoCo

J. Maier, S. Lebedev, J. Erath, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, M. Lell, and M. Kachelrieß. Deep learning-based 
coronary artery motion estimation and compensation for short-scan cardiac CT. Med. Phys. 48(7):3559-3571, July 2021.
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MoCo for CBCT (Slow Rotating CT)

• Gating does only work on regular breating. Otherwise:

• Idea: Just use a single x-ray projection as a time point for motion 
estimation: Patient Single Angle 

Reconstruction
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Training Workflow of Deep SAMoCo

SAR
of projection j

SAR
of projection i

DVF deforming
patient from 

time i to time j

Phase A Phase B

All images shown here are volumes of size 5123.

x

y

z

Network input Network (modified U-Net) Training labels

Random patient, random A and B

Calculate DVF from 
phase A to phase B

(Demons, Deeds, 
VoxelMorph, …) 

Randomly select
- projection i from A
- projection j from B
and backproject.
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VUMC_4DThorax

Red: RPM signal (external signal – not used for recon)
Yellow: Diaphragm motion (intrinsic signal – from PAMoCo recon)
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MSK 1

Red: RPM signal (external signal – not used for recon)
Yellow: Diaphragm motion (intrinsic signal – from PAMoCo recon)
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Imaging (t < 0) Treatment (t > 0)
t

Upcoming in 

2025
(yet to be developed)
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DETRUNCATION
Lots of missing data



34

Fonseca, Gabriel Paiva, et al. "Evaluation of novel AI‐based extended field‐of‐view CT reconstructions." 
Medical Physics (2021).
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Fonseca, Gabriel Paiva, et al. "Evaluation of novel AI‐based extended field‐of‐view CT reconstructions." 
Medical Physics (2021).
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What is an Autoencoder?

• In and output domain are the same, here x.

• Bottleneck z enforces the encoder and decoder to do a good job.

• Examples:
– Principal component analysis (linear autoencoder), lossless

– PCA with dimensionality reduction (nonlinear due to clipping), lossy

– Image compression and decoding, e.g. jpeg, lossy

• Latent space typically not interpretable.

E D
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What is a Variational Autoencoder?

• Make latent space regular.

• Allow to sample in latent space from a given distribution, here: 
normal distribution.

• The VAE is a generative model. 

• It allows to generate new data by sampling new values from the 
normal distribution.

E D
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VAE Data & Training

• Data:
– Clinical data acquired with a Siemens Somatom Force CT 

– 85 adult patient scans

– 0.6 mm slice thickness and 0.69 to 0.98 mm axial voxel spacing

– Randomly split into training, validation and testing (70:15:15)

• Training:
– Trained for 150 epochs

– Learning rate 0.001

– Adam optimizer

– Hybrid loss function consisting of VAE loss, perceptual loss and WGAN generator loss

Coronal Sagittal
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LSR for Detruncation

• Train VAE on very many untruncated CT images fn

• Find latent space point z to best match the truncated rawdata p

• Forward project D(z) and use the resulting rawdata to extrapolate the 
measured rawdata.

• Do a final image reconstruction of the detruncated sinogram.
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Image Domain Experiment
• Purely image domain

• Hand-crafted mask

• Minimizing

• Results see rhs.
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Search in Latent Space

• Optimization of latent space 
vector in projection domain

• Video showing intermediate 
images of selected iteration 
steps. 

Target Image Target Sinogram
Masked (15 cm)
Target Sinogram

Generated 
Sinogram

Generated Image
Difference to

Target Sinogram
Masked (15 cm)

Generated Sinogram
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J. HJ. Ketola, et al., Deep learning-based sinogram extension method for interior computed tomography, 
Medical Imaging: Physics of Medical Imaging. Vol. 11595. International Society for Optics and Photonics (2021)

Reference Methods
U-Net-based Sinogram Extension



45

MAEs: 127 HU, 272 HU MAEs: 31 HU, 121 HU MAEs: 10 HU, 69 HUMAEs: 0 HU, 0 HU

Results

MAEs: 24 HU, 260 HU MAEs: 60 HU, 218 HU MAEs: 6 HU, 95 HU

Ground Truth ADT (classical) U-Net (Ketola et al.) LSR (ours) 

MAEs: 0 HU, 0 HU

C = 50 HU, W = 1200 HU.
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Tips for Researchers
• Do not feel pressed to invent new networks

– Regard existing networks as a computational tool (such as, e.g., the Fourier transform).

– Many existing networks are useful for other purposes than their original one.

– Achtung: Some uninformed reviewers may reject your manuscript:

» R: “This network is not new. This is why I recommend rejection.” 

» A: “Why should it be? Fourier transforms can also be used. They are far from being new!”

• Perform ablation studies
– Change parameters of your network (e.g. size, depth, etc.)

– Change training parameters (learning rate, batch size, dropout rate, etc.)

– Change the amount of training data

• Existing solutions
– Compare with prior approaches, also with non-AI ones, in particular with the gold standard

– Optimize prior approaches with the same effort

» Same training data (also to fit the parameters of non-AI algorithms)

» Same loss function

» Same minimization algorithm
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More Tips for Researchers
• Ensure all the data that have been acquired make it into the image.

• Do not exaggerate (e.g. noise reduction)

• Question whether the solution is really based on measured 
information or whether it is just nicely looking (→ hallucinations)

• Unphysical but nicely looking:
– Converting 80 kV images into 140 kV ones

– Converting sparse view into full view images

– Generating contrast-enhanced images from unenhanced ones

– Removing motion artifacts from a cardiac CT image by editing the image

– … Proposed48 viewsGround truth

Yo Seob Han, Jaejun Yoo and 
Jong Chul Ye. Deep Residual 
Learning for Compressed 
Sensing CT Reconstruction 
via Persistent Homology 
Analysis. ArXiv 2016.
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Thank You!

This presentation will soon be 
available at www.dkfz.de/ct.

Job opportunities through DKFZ’s 
international PhD or Postdoctoral 
Fellowship programs 
(marc.kachelriess@dkfz.de). 

Parts of the reconstruction software 
were provided by RayConStruct®

GmbH, Nürnberg, Germany.
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