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Learning Objectives

• To learn that AI-based image reconstruction is 
mainly noise reduction

• To understand how AI-based image reconstruction 
works

• To learn about its dose reduction potential, and 
about potential pitfalls
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Fully Connected Neural Network

• Each layer fully connects to previous layer

• Difficult to train (many parameters in W and b)

• Spatial relations not necessarily preserved

Hidden Hidden Output Hidden Input 
e.g. 512×512×3 pixels
e.g.

e.g. 1 label
e.g. Copenhagen

Output:Input:
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Convolutional Neural Network (CNN)
• Replace dense W in                                    by a sparse 

matrix W with sparsity being of convolutional type.

• CNNs consist (mainly) of convolutional layers.

• Convolutional layers are not fully connected.

• Convolutional layers are connected by small, say 
3×3, convolution kernels whose entries need to be 
found by training.

• CNNs preserve spatial relations to some extent.

G kernels 
3×3×F

Src
512×512×F

Dst
512×512×G

Attention: No convolution in depth direction! 

Here, a 2D example is shown. Conv layers also exist in 3D and higher dimensions.
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U-Net1

3 x 3 Convolution, ReLU

2 x 2 Max. Pooling
2 x 2 Upsampling
Depth Concatenate

1 x 1 Convolution, ReLU

Input:

Output:

384 × 256 × 4

12 × 8 × 480

24 × 16 × 320

48 × 32 × 160

96 × 64 × 80

192 × 128 × 40

6 × 4 × 960

Concatenative skip connection

1O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for
biomedical image segmentation. Proc. MICCAI:234-241, 2015. 



7

High-End and Mid-Range Systems 
2023

CT-System

Rotation,

Cone,

Coll.

Max. Power, Anode Angle, 

Name,

Max. mA @ low kV 

Patient-specific 

prefilters

Detector 

Configuration, Type, 

Name

FOM,

Reconstruction 

Matrix

Special 

Reconstruction 

Algorithms

Spectral

Canon

Aquilion ONE Prism 

Edition 

0.275 s,

15°,

160 mm

100 kW, 10°,

MegaCool Vi,

600 mA @ 80 kV

Ag,

{0, x} mm

320 × 0.5 mm, EI,

PUREViSION

50 cm,

512

iterative (AIDR 3D), 

deep (AiCE, PIQE)
fast TVS with DL H

Canon

Aquilion Precision 

Edition

0.35 s,

3.8°,

40 mm

72 kW, 7°,

MegaCool,

600 mA @ 80 kV

none
160 × 0.25 mm, EI,

PUREViSION

50 cm,

512, 1024, 2048

iterative (AIDR 3D),

deep (AiCE)
2 scans H

GE

Revolution Apex Elite

0.23 s,

15°,

160 mm

108 kW, 10°,

Quantix 160,

1300 mA @ 70+80 kV

none
256 × 0.625 mm, EI,

GemStone Clarity

50 cm,

512

fast TVS or 2 

scans
H

GE

Revolution Apex Plus

0.28 s,

7.6°,

80 mm

108 kW, 10°,

Quantix 160,

1300 mA @ 70 kV

none
128 × 0.625 mm, EI,

GemStone Clarity

50 cm,

512

deep (TrueFidelity), 

SnapshotFreeze

fast TVS or 2 

scans
M

Philips

Spectral CT 7500 

0.27 s,

7.7°,

80 mm

120 kW, 8°,

iMRC,

925 mA @ 80 kV

none
2 · 128 × 0.625 mm, EI,

NanoPanel Prism

50 cm,

512, 768, 1024
iterative (iDose) sandwich H

Philips

Incisive CT

0.35 s,

3.9°,

40 mm

80 kW,

vMRC
none 2 · 64 × 0.625 mm, EI

50 cm,

512, 768, 1024

iterative (iDose),

deep (Precise 

Image&Cardiac)

M

Siemens

Somatom X.ceed

0.25 s,

3.7°,

38.4 mm

120 kW, 8°,

Vectron,

1300 mA @ 70+80+90 kV

Sn,

{0, 0.4, 0.7} mm 

2 · 64 × 0.6 mm, EI,

Stellar

50 cm,

512, 768, 1024
iterative (ADMIRE)

split filter (Twin 

Beam) or 2 scans 

(Twin Spiral)

M

Siemens

Somatom Force

0.25 s,

5.5°,

57.6 mm

2 · 120 kW, 8°,

Vectron,

2 · 1300 mA @ 70+80+90 kV

Sn,

{0, 0.6} mm

2 · 2 · 96 × 0.6 mm, EI,

Stellar

50 cm/35 cm,

512, 768, 1024
iterative (ADMIRE) DSCT H

Siemens

Naeotom Alpha

0.25 s,

5.5°,

57.6 mm

2 · 120 kW, 8°,

Vectron,

2 · 1300 mA @ 70+90 kV

Sn,

{0, 0.4, 0.7} mm

2 · 144×0.4 or

2 · 120×0.2 mm, PC,

QuantaMax

50 cm/36 cm,

512, 768, 1024
iterative (QIR) DSCT and PCCT H
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Vendor Algorithm
Additional 

parameters

Sinogram 

restoration

Image

restoration

Full

iterations

AI, Deep 

learning

all FBP -  - - -

Canon

AIDR-3D enhanced

FIRST

AiCE

PIQE

Body, Bone, Brain, Cardiac, Lung

each with

Mild, Standard, or Strong

?





?

?









-



-

-

-

-





GE
ASIR, ASIR-V

True Fidelity

0 – 100% (e.g. ASIR 30%)

???



?





-

-

-



Philips

iDose

IMR

Precise Image&Cardiac

Levels 1 – 7

Soft, Routine, or SharpPlus

???



?

?



?

?

-

?

?

-

-



Siemens

IRIS 

SAFIRE 

ADMIRE

QIR (PCCT-specific)

Strength 1 – 5

Strength 1 – 5

Strength 1 – 5

Strength 1 – 4

















-







-

-

-

-

Premium Recon Algorithms 2023

M. Lell and M. Kachelrieß. Recent and upcoming technological developments in CT. Invest. Radiol. Feb. 2020
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Dose Reduction by Sparse View 
Scanning and AI-Based Reconstruction

Yo Seob Han, Jaejun Yoo and Jong Chul Ye. Deep Residual Learning for Compressed Sensing CT 
Reconstruction via Persistent Homology Analysis. ArXiv 2016.
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Very 
impressive, 

but…

Very 
impressive, 

but…

Very 
impressive, 

but…
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Noise Removal Example

• Architecture based on state-of-the-art 
networks for image classification (ResNet).

• 32 conv layers with skip connections

• About 2 million tunable parameters in total

• Input is arbitrarily-size stack of images, 
with a fixed number of adjacent slices in 
the channel/feature dimension.

Input:
low-dose

CT images

Output:
denoised 

CT images

Full-dose 
reference

MSE
loss function

⊝Noise
subtraction

Skip 
connection

Residual Block

Predicted
noise

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT 
Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.
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Low dose images (1/4 of full dose)

Noise Removal Example

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT 
Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.
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Denoised low dose

Noise Removal Example

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT 
Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.
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Full dose

Noise Removal Example

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT 
Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.
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Denoised full dose

Noise Removal Example

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT 
Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.
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Denoised low dose

Noise Removal Example

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT 
Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.
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Denoised low dose

Noise Removal Example

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT 
Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.
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• Advanced intelligent Clear-IQ Engine (AiCE)

• Trained to restore low-dose CT data to match the 
properties of FIRST, the model-based IR of Canon.

• FIRST is applied to high-dose CT images to obtain a 
high fidelity training target

Canon‘s AiCE

Information taken from https://global.medical.canon/products/computed-tomography/aice_dlr



FBP FC52 (analytical recon) AIDR3De FC52 (image-based iterative)

AiCE Lung (deep learning)FIRST Lung (full iterative)

Courtesy of 
Radboudumc, 

the Netherlands

U = 100 kV
CTDI = 0.6 mGy
DLP = 24.7 mGycm
Deff = 0.35 mSv
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Noise Reduction: GE‘s True Fidelity

• Based on a deep CNN

• Trained to restore low-dose CT data to match the 
properties of high quality FBP datasets.

• Said to preserve noise texture and NPS 



FBP ASIR V 50% True Fidelity

Courtesy of GE Healthcare
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Solomon et al. Noise and spatial resolution properties of a commercially available deep 
learning-based CT reconstruction algorithm. Med. Phys. 47(9):3961-3971, Sept. 2020



28

Philips’ Precise Image

• Noise-injected data serve as low dose examples 
while their original reconstructions are the labels. A 
CNN learns how to denoise the low dose images.

Taken from https://www.philips.com/c-dam/b2bhc/master/resource-catalog/landing/precise-suite/incisive_precise_image.pdf



Taken from https://www.philips.com/c-dam/b2bhc/master/resource-catalog/landing/precise-suite/incisive_precise_image.pdf
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Canon’s PIQE
• PIQE (precise IQ engine) is trained to convert low 

resolution images into high resolution images

• Training data are taken from Canon’s Precision CT that 
has small detector pixels (0.25 mm at iso). 

• Claims:
– Improved 

visualization of
plaque

– Reduction in
blooming 
artifacts

AIDR3D PIQE

Image taken from at.medical.canon
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Are the Methods Reliable?

• Studies about explainability of AI in CT image formation 
are more than sparse.

• Cosmetic corrections:  
– Unclear if noise reduction, artifact reduction etc. is removing/adding 

lesions. The whole process is a black box. Proofs do not exist.

– Super resolution applications may only achieve the impression of 
higher spatial resolution: Two closely adjacent small lesions that 
appear as one blurry lesion in the original image, are they converted to 
two separate objects or just to one non-blurry lesion?

• Difficult, if not impossible, to perform quality assurance.
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Take Home Points

• AI plays and will play a significant role in CT image 
formation.

• High potential for
– Noise and dose reduction

– Artifact correction

– Real-time dose assessment (also for RT)

– … 

• Care has to be taken
– Underdetermined acquisition, e.g. sparse view or

limited angle CT, require the net to make up information!

– Nice looking images do not necessarily represent the ground truth.

– Data consistency layers and variational networks with rawdata 
access may ensure that the information that is made up is 
consistent with the measured data.

– …
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Thank You!

In case of questions or suggestions 

please write to marc.kachelriess@dkfz.de.


