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Learning Objectives

 To learn that Al-based image reconstruction Is
mainly noise reduction

 To understand how Al-based image reconstruction
works

 To learn about its dose reduction potential, and
about potential pitfalls




Fully Connected Neural Network

« Each layer fully connects to previous layer
 Difficult to train (many parameters in W and b)
« Spatial relations not necessarily preserved
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y(x) = f(W-z+b) with f(x) = (f(21), f(22),...) point-wise scalar, e.g. f(z) = V0 = ReLU



Convolutional Neural Network (CNN)

* Replace dense Win y(x) = f(W -x + b) by a sparse
matrix W with sparsity being of convolutional type.

« CNNs consist (mainly) of convolutional layers.
« Convolutional layers are not fully connected.

« Convolutional layers are connected by small, say
3x3, convolution kernels whose entries need to be

found by training.
« CNNs preserve spatial relations to some extent.
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Attention: No convolution in depth direction!

Here, a 2D example is shown. Conv layers also exist in 3D and higher dimensions.



U-Netl

Output:

|nput: 384 x 256 x 4
‘ Concatenative skip connection

192 x 128 x 40

96 x 64 x 80
48 x 32 x 160
24 x 16 x 320
12 x 8 x 480 O- 3 x 3 Convolution, RelLU
o ®» 1x1 Convolution, ReLU
O 2 x 2 Max. Pooling
2 x 2 Upsampling
6 x 4 x 960 -O- Depth Concatenate

10. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for dkfz
®

biomedical image segmentation. Proc. MICCAI:234-241, 2015.



High-End and Mid-Range Systems
2023

Rotation, | Max. Power, Anode Angle, Patient-specific Detector FOM, Special
CT-System Cone, Name, refiItF::Ars Configuration, Type, Reconstruction Reconstruction Spectral
Coll. Max. mA @ low kV P Name Matrix Algorithms
Canon 0.275 s, 100 kw, 10°, . .
Aquilion ONE Prism | 15, MegaCool Vi, . ’;}g;nm 32§JR0E'§:’””S1%NE" ngg" I:iir:tl\zii@éDEI%DE))’ fast TVS with DL| H
Edition 160 mm 600 MA @ 80 kV ' P ’
AQUiIic?r?rF]’?gcision 0'33§°S’ l\7/lze|g;<\':lt\éo7oly none B0 % 28 Ll () D e, TERELTVE (DI S0, 2 scans H
Edition 40 mm 600 MA @ 80 KV PUREVISION 512, 1024, 2048 deep (AICE)
GE 0'23:,5’ . kW, O 256 x 0.625 mm, El, 50 cm, fast TVS or 2
Revolution Apex Elite L QUL B none GemStone Clarit 512 scans A
P 160 mm 1300 MA @ 70+80 KV y
GE 0'2805’ - kW, A0, 128 x 0.625 mm, El, 50 cm, deep (TrueFidelity),[ fast TVS or 2
Revolution Apex Plus [ QUED 150, none GemStone Clarit 512 SnapshotFreeze scans L
P 80 mm 1300 mA @ 70 kV y P
- 0.27 s 120 kw, 8°
Philips ' : o 2128 % 0.625 mm, El 50 cm : L .
7.7°, iIMRC, none . ! iterative (iDose) sandwich H
Spectral CT 7500 80 mm 925 mA @ 80 KV NanoPanel Prism 512, 768, 1024
- 0.35 s, iterative (iDose),
Philips o 80 kW, 50 cm, .
Incisive CT 3.9°, VMRC none 2 - 64 x 0.625 mm, El 512, 768, 1024 deep (Preu_se M
40 mm Image&Cardiac)
. 0.25 s, 120 kW, 8°, split filter (Twin
Somilt?)me)r(lsceed 3.7°, Vectron, (0,0 488’7} mm 264 xStOe.ItISarrnm, El, 512 5$6C8m’1024 iterative (ADMIRE) |[Beam) or 2 scans| M
: 38.4 mm 1300 mA @ 70+80+90 kV T ’ ! (Twin Spiral)
. 0.25 s, 2 - 120 kW, 8°,
Sort?;(tecr)nr: rllzi)rce 2kl Vlsteirairy {0 OSGr}]~'mm e %Sreﬁé? mm. £ 551020%3510024 IR (AR beey h
57.6 mm 2 - 1300 mA @ 70+80+90 kV S ’ ’
Siemens 0.25s, 2 - 120 kW, 8°, sn 2 - 144%0.4 or 50 cm/36 cm
Naeotom Aloha 5.5°, Vectron, (0,04 0’7} mm 2 - 120x0.2 mm, PC, 512 768 102’4 iterative (QIR) |DSCT and PCCT| H
P 57.6 mm 2 - 1300 mA @ 70+90 kV T QuantaMax ’ ’




Premium Recon Algorithms 2023

. Additional Sinogram Image Full Al, Deep
Vendor Algorithm : . : . :
parameters restoration | restoration | iterations learning

all FBP - v - - -

AIDR-3D enhanced Body, Bone, Brain, Cardiac, Lung 4 v - -

FIRST each with v v v -

Canon : :

AICE Mild, Standard, or Strong ? v - 4

PIQE ? ? v - v

GE ASIR, ASIR-V 0 —100% (e.g. ASIR 30%) 4 4 - -
True Fidelity ?2?7? ? 4 - v

iDose Levels1 -7 4 4 - -

Philips IMR Soft, Routine, or SharpPlus ? ? ? -
Precise Image&Cardiac ?2?7? ? ? ? v

IRIS Strength 1 -5 4 4 - -

Siemens SAFIRE Strength 1 - 5 v v v -

ADMIRE Strength 1 - 5 v v v -

QIR (PCCT-specific) Strength1 -4 4 4 4 -

| ';I apply inverse model I l
— —
regularize regularize
rawdata image
F 3 n
1 |

{ apply forward model |e

M. Lell and M. Kachelrie3. Recent and upcoming technological developments in CT. Invest. Radiol. Feb. 2020 dkfz.



Dose Reduction by Sparse View
Scanning and Al-Based Reconstruction

(a) Depth-wise receptive field Ground truth 2 Total variation Proposed

(a) 48 view

=) Max pooling ™ Avg unpooling Conv Receptive field
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X : Input Y : Label X - ¥ : Composite

(c) 96 view

= 2x2 Max pooling 2x2 Avg unpooling 1x1 Con 3x3 Conv, bnorm, RelU

Figure 1. The proposed deep residual learning architecture for sparse view CT reco

Yo Seob Han, Jaejun Yoo and Jong Chul Ye. Deep Residual Learning for Compressed Sensing CT
Reconstruction via Persistent Homology Analysis. ArXiv 2016.




(b) 64 view (a) 48 view

(c) 96 view

Ground truth : Proposed




Noise Removal Example

Input:
low-dose
Input (NxNxZ) CT Imag es
~ Conv2D 128, (9x9)
'-
Batch Normalization ) RSl oy
ReLU Activation ‘ Residual Block
Group Conv2D Residual Block|
8x16, (3x3)
Residual Block .
Batch Normalization ggll’]pn eCt | on
ReLU Activation| Residual Block
Residual BlocK _
[Batch Normalization / esf - Predlcted
RelLU Activation ’_/ / ReSldual B'OCk n O I S e
| 7 Residual Block
D :
r Residual Block
Noise
Dutput (RNl subtraction E‘
 Architecture based on state-of-the-art
networks for image classification (ResNet).
« 32 conv layers with skip connections O Ioss'\f/IuSnEction
= _ denoised >
* About 2 million tunable parameters in total CT images 3
« Inputis arbitrarily-size stack of images, Full-dose
with a fixed number of adjacent slices in reference

the channel/feature dimension.

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT dkfz
@

Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.



Noise Removal Example

Low dose images (1/4 of full dose)

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT dkfz
o

Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.



Noise Removal Example

Denoised low dose

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT dkfz
o

Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.



Noise Removal Example

Full dose

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT dkfz
o

Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.



Noise Removal Example

Denoised full dose

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT dkfz
o

Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.



Noise Removal Example

Denoised low dose

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT dkfz
o

Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.



Noise Removal Example

Nice lookind |mages may
contain pit fa\\s

Denoised low dose

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT dkfz
o

Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.



Canon‘s AICE

« Advanced intelligent Clear-1Q Engine (AICE)

 Trained to restore low-dose CT data to match the
properties of FIRST, the model-based IR of Canon.

 FIRST is applied to high-dose CT images to obtain a
high fidelity training target

Training AiCE — Deep Learning

Anatomical
mmmmm

nnnnnnn

nnnnnn

nnnnnn

Multiple Variations

AICE Image

Information taken from https://global.medical.canon/products/computed-tomography/aice_dIr dkuQ



U =100 kV

CTDI = 0.6 mGy
DLP =24.7 mGy-cm
Dy = 0.35 mSv

“—{ Courtesy of
— . Radboud ,
FIRST Lung (full'iterative) AICE Lung (deep Tearning thei,etﬁ(‘;”;;”dcs



Noise Reduction: GE‘s True Fidelity

« Based on a deep CNN

* Trained to restore low-dose CT data to match the
properties of high quality FBP datasets.

e Said to preserve noise texture and NPS

The 20 cm water phantom (GE Healthcare, WI, US) was scanned on Normalized NPS Curves
Revolution CT with two CTDIvol levels: 49mGy and 15.1mGy, and 2.5 mm
thick images were reconstructed using FBP, ASiR-V 100% and DLIR-H
(Fig. 11a). ASIR-V 100% and DLIR-H were selected for the highest potential
visible change in image texture relative to the FBP reference at higher
dose, for a challenging setup to compare the impact of the iterative
reconstruction and deep-learning technologies on image appearance. The
normalized NPS curves (Fig. 11b) showthat images of low-dose DLIR have
the same NPS characteristics as the images of high-dose FBP, whereas
iterative reconstruction produces results that are clearly different.

DLIR-H, 4.9 mGy
ASIR-V 100%, 4.9 mGy
FBP, 15.1 mGy

nNPS (mm?2)

FBP, 15.1 mGy ASIR-V 100%, 4.9 mGy DLIR-H, 4.9 mGy

Spatial Frequency {lp/cm)




Courtesy of GE Healthcare
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Solomon et al. Noise and spatial resolution properties of a commercially available deep dkf
learning-based CT reconstruction algorithm. Med. Phys. 47(9):3961-3971, Sept. 2020 ZO




Philips’ Precise Image

 Noise-injected data serve as low dose examples
while their original reconstructions are the labels. A
CNN learns how to denoise the low dose images.

Routine-dose
target image

Routine-dose
scan data

FBP
reconstruction

Low-dose .

stimulation ‘
technigue
Low-dose

scan data

Pre-processing

Taken from https://www.philips.com/c-dam/b2bhc/master/resource-catalog/landing/precise-suite/incisive_precise_image.pdf

o Acquires data from routine-dose clinical scans.

Generates low-dose scan data from the
routine-dose data by a sophisticated low-dose
simulation technique that accurately models both
photon and electronic noise in low-dose scans.'

Reconstructs routine-dose scan data with
a traditional FBP technique.

Trains the CNN to reproduce the image

appearance of the routine-dose FBP images
with low-dose scan data.

dkfz.



iDose? 1.4 mSv Precise Image 0.7 mSv iDose* 5.1 mSv

iDose* 1.5 mSv Precise Image 0.75 mSv iDose? 5.4 mSv Precise Image 2.6 mSv

Taken from https://www.philips.com/c-dam/b2bhc/master/resource-catalog/landing/precise-suite/incisive_precise_image.pdf



Canon’s PIQE

* PIQE (precise IQ engine) is trained to convert low
resolution images into high resolution images

* Training data are taken from Canon’s Precision CT that
has small detector pixels (0.25 mm at iso).

e Claims:

— Improved
visualization of
plagque

— Reduction in
blooming
artifacts

AIDR3D PIQE

Image taken from at.medical.canon



Are the Methods Reliable?

« Studies about explainability of Alin CT image formation
are more than sparse.

« Cosmetic corrections:

— Unclear if noise reduction, artifact reduction etc. is removing/adding
lesions. The whole process is a black box. Proofs do not exist.

— Super resolution applications may only achieve the impression of
higher spatial resolution: Two closely adjacent small lesions that
appear as one blurry lesion in the original image, are they converted to
two separate objects or just to one non-blurry lesion?

 Difficult, if not impossible, to perform quality assurance.




Take Home Points

IS
¥ S
»

»

« Al plays and will play a significant role in CT imag'

formation.
« High potential for

— Noise and dose reduction
— Artifact correction
— Real-time dose assessment (also for RT)

« Care has to be taken

— Underdetermined acquisition, e.g. sparse view or
limited angle CT, require the net to make up information!

— Nice looking images do not necessarily represent the ground truth.

— Data consistency layers and variational networks with rawdata
access may ensure that the information that is made up is
consistent with the measured data.



In case of questions or suggestions
please write to marc.kachelriess@dkfz.de.



