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• In dual-source CT, the 
field of measurement 
(FOM) of the second 
source-detector pair is 
often limited by technical 
constraints. 

• Dual-energy information is 
only available within the 
small FOM.

• Deep learning-based 
iterative reconstruction to 
recover missing 
information.

System A

System B

FOM A

FOM B

Reconstruction A Reconstruction B*

Motivation

*Note: The reconstruction was performed using a custom reconstruction software. The vendor‘s reconstruction software would clip the 

reconstruction to the small FOM.
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Single-Energy Mappings

Input to network Error w.r.t. ground truth
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Single-Energy Mappings
Out-of-distribution samples

Input to network Error w.r.t. ground truthPrediction

C = 0 HU, W = 1000 HU C = 0 HU, W = 300 HU
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Single-Energy Mapping

Sinogram, energy B

Sinogram, energy A

(Training)

CT Image, energy A

Reconstruction
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Proposed Approach

Sinogram, energy B

Sinogram of current estimate

(Training)

Current estimate

Forward projection

CT Image, energy B

Make use of limited angle information outside small 
FOM to learn a more reliable mapping.

Raw data fidelity Update image
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Training Data Generation
Prior images
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 Forward projection of prior images to generate synthetic raw data.

Small FOM
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Results
Simulated data

C = 0 HU, W = 1000 HU

Ground truth, 70 kV Prediction - GT
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Results
Simulated data

C = 0 HU, W = 1000 HU
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Results
Simulated data

C = 0 HU, W = 1000 HU

Ground truth, 70 kV Prediction - GT
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Measurements
Siemens SOMATOM Definition Flash

140 kV

80 kV

Iodine / Gadolinium vials Hip phantom

140 kV Image

80 kV Image
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Measurements
Siemens SOMATOM Definition Flash: Reference measurement

80 kV

Iodine / Gadolinium vials Hip phantom

80 kV Image
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Results
Siemens SOMATOM Definition Flash

80 kV reference Prediction

C = 0 HU, W = 1400 HU

ROI CT # Error

1 -43 HU -9 HU

2 853 HU 3 HU

3 559 HU 10 HU

4 252 HU -2 HU

5 72 HU -12 HU

6 10 HU -12 HU

7 -2 HU -3 HU

8 12 HU 13 HU

9 -5 HU 7 HU

10 977 HU 11 HU

11 684 HU 20 HU

12 198 HU -15 HU

13 61 HU -4 HU

14 4 HU -3 HU

15 -3 HU 6 HU

16 -27 HU -1 HU

1
2

3

4
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Conclusions

• Proposed approach is able to provide accurate dual-
energy information for the entire FOM.

• The current training strategy allows to have one 
network for any tube voltage combination.

• Iterative application of the proposed approach may 
improve the quality of the prediction, especially for 
out-of-distribution samples.
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Thank You!

This presentation will soon be available at www.dkfz.de/ct 

Job opportunities through DKFZ’s international PhD or 
Postdoctoral Fellowship programs (www.dkfz.de), or directly 

through Prof. Dr. Marc Kachelrieß (marc.kachelriess@dkfz.de).

Parts of the reconstruction software were provided by 
RayConStruct® GmbH, Nürnberg, Germany.


