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Windmill Artifacts
in Multislice Spiral CT

[1] B. Ohnesorge, T. Flohr, H. C. Becker, A. Knez and M. Reiser. “Multi-slice CT Technology”. Multi-slice CT in Cardiac Imaging, 2007,
PP. 41-69

• During backprojection in multislice 
spiral CT, an interpolation is 
performed between adjacent 
detector rows.

• Inadequate longitudinal sampling 
(not satisfying the Nyquist 
criterion) leads to so-called 
windmill artifacts.

• They are characterized by streaks 
diverging from a focal high-density 
structure.

• The streaks appear to rotate while 
scrolling through the affected 
slices.

C = 0 HU, W = 200 HU;
collimation: 32×0.6 mm 



Windmill Artifact Reduction

• Reducing windmill artifacts by reconstructing thicker slices leads to a 
reduction of the z-resolution of the reconstructed images.

• Other previous works focus on the reduction of windmill artifacts in image 
domain1.

• The state of the art method called z-flying focal spot (zFFS) is hardware-
based:

C = 60 HU, W = 360 HU;
reconstructed 

slice width 0.75 mm

Without zFFS
collimation: 96×0.6 mm 

With zFFS
collimation: 2zFFS ∙ 96×0.6 mm 

[1] K. M. Brown, S. Žabic, “Method for Reducing Windmill Artifacts in Multislice CT Images”. In: SPIE Medical Imaging Proc., 2011, Vol.
7961, PP. 491–495.



z-Flying Focal Spot (zFFS)

• The zFFS is a periodic motion of 
the focal spot in longitudinal 
direction.

• Two subsequent readings are 
slightly shifted in z-direction to 
achieve a doubled sampling 
distance in the isocenter.

• It is only included in high-end 
CT scanners and may not be 
available in the fastest scan 
mode.

 Provide a software-based 
approach that upsamples the 
projection data like the zFFS.

 Row interpolation with deep 
learning (RIDL) D
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[1] M. Kachelrieß, M. Knaup, C. Penßel and W. A. Kalender. “Flying Focal Spot (FFS) in Cone-Beam CT”. In: IEEE Transactions on Nuclear 

Science, June 2006, Vol. 52, No. 3, PP. 1238-1247



RIDL-CNN

• Mapping from projection data without 
zFFS-rows to corresponding zFFS-like 
rows.

• Network input and output need to be 
interlaced after prediction to receive 
upsampled projection.

• Comparable results to RIDL-SRResNet2

(presented at Fully3D conference 2021) 
could be achieved while reducing 
network complexity.

• Beside a clinical dataset we introduce 
an experimental synthetic dataset for 
network training.

• Advantages of synthetic data:
– Any amount of training data with different 

structures can be simulated.

– Noise-free simulation possible.

– No CT scanner with zFFS required for training 
data acquisition.

[1] J. Magonov, M. Kachelrieß, E. Fournié, K. Stierstorfer, T. Buzug, and M. Stille, “Row Interpolation in Spiral CT with Deep Learning”.
In: 16th Virtual International Meeting on Fully 3D Image Reconstruction in Radiology and Nuclear Medicine, Oct. 2021, PP. 376-380

Random
patches (64×32)

Network 
input

Desired 
network output

Even rows      
(32×32)

Odd rows
(32×32)



Training and Validation Data
Clinical Dataset

• Clinical dataset with projection data from patient spiral CT scans 
acquired with zFFS.

• Based on Somatom Definition Flash and Somatom Force scans 
from 40 patients.

• Projection data acquisition of clinical data after the rebinning.

• 32 scans for training (20 head; 8 thorax; 4 abdomen)

• 8 scans for validation (5 head; 2 thorax; 1 abdomen)

C = 60 HU, W = 360 HU C = -400 HU, W = 1500 HU C = 60 HU, W = 400 HU



Training and Validation Data
Synthetic Dataset

• Using the software package CT_Sim based on ray propagation 
simulation software Deterministic Radiological Simulation (DRASIM).

• Simulating water cylinder (parallel to z-axis) containing 100 randomly 
arranged spherical shells with varying densities (0.5 – 3.0 g/cm3)

• Water cylinder: length = 10 cm, diameter = 40 cm, density 1.0 g/cm3

• Shell diameter range: 1 – 20 cm; shell width range: 0.3 – 2.0 mm

• Simulated 200,000 noise-free projections (160,000 for training; 40,000 
for validation)

• Value range of synthetic projection data was linearly scaled to the 
value range of the clinical dataset.

• Example projection of a simulated scan with a randomly generated 
phantom:

800 channels

80 rows



Training Details

• Trained two networks (RIDL CNN) with the clinical and noise-
free synthetic dataset separately.

• Training and validation patches for both datasets:

– 500,000 examples from the corresponding training set

– 125,000 examples from the corresponding validation set

• Loss function proposed in 1: 

• α = 0.84, empirically determined

• Initial learning rate: 1×10-5 ; halved once the validation error 
could not be minimized for 25 epochs; batch size: 256; ADAM 
optimizer

[1] Z. Zhao, et al. “Loss Functions for Image Restoration With Neural Networks”. In: 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), 2016, PP. 1874–1883



Evaluation of Windmill Artifact 
Reduction

• Head phantom scans with real human bones.

• Scanned with Siemens Somatom Force system.

• Head phantom scan 1:
– Collimation 96×0.6 mm; acquired with zFFS; pitch = 1.0; 120 kV; 

reconstructed slice width: 1.0 mm

• Head phantom scan 2:
– Collimation 48×1.2 mm; no zFFS available in this acquisition mode;

pitch = 1.0; 120 kV; reconstructed slice width: 1.5 mm



Results
Head Phantom Scan 1

C = 0 HU, W =  150 HU

C = 60 HU, W = 360 HU; collimation: 96×0.6 mm;
reconstructed slice width 1.0 mm

Ground truth
with zFFS

Without zFFS
RIDL-CNN trained with

clinical dataset
RIDL-CNN trained with

synthetic dataset

RMSE: 4.73 HU
SSIM: 0.9625

RMSE: 3.69 HU
SSIM: 0.9657

RMSE: 4.42 HU
SSIM: 0.9648
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Difference images to a WFBP of corresponding projection data with zFFS. 



Results
Head Phantom Scan 1

Difference images to a WFBP of corresponding projection data with zFFS. 

Ground truth
with zFFS

Without zFFS
RIDL-CNN trained with

clinical dataset
RIDL-CNN trained with

synthetic dataset

C = 0 HU, W =  150 HU

C = 60 HU, W = 360 HU; collimation: 96×0.6 mm;
reconstructed slice width 1.0 mm

RMSE: 3.72 HU
SSIM: 0.9628

RMSE: 3.42 HU
SSIM: 0.9656

RMSE: 3.77 HU
SSIM: 0.9634
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Results
Head Phantom Scan 2

C = 60 HU, W = 360 HU; collimation: 48×1.2 mm;
reconstructed slice width 1.5 mm

Standard WFBP
no zFFS available

RIDL-CNN trained with
clinical dataset

RIDL-CNN trained with
synthetic dataset
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Results
Head Phantom Scan 2

Standard WFBP
no zFFS available

C = 60 HU, W = 360 HU; collimation: 48×1.2 mm;
reconstructed slice width 1.5 mm

RIDL-CNN trained with
clinical dataset

RIDL-CNN trained with
synthetic dataset
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Why are Synthetic Data
Performing Better?

Ground truth
(removed rows)

RIDL-CNN trained with
clinical dataset

RIDL-CNN trained with
synthetic dataset

ROI 2 
SD: 6.38 HU

ROI 1 
SD: 7.48 HU

ROI 2 
SD: 4.55 HU

ROI 1 
SD: 4.65 HU

ROI 2 
SD: 5.84 HU

ROI 1
SD: 6.83 HU

C = 60 HU, W = 360 HU;
Reconstructed only network 

predicted rows. Removed 
every second row from GT 

projection data.

• RIDL-CNN trained with real patient data leads to a smoother result (lower SD in ROIs).

• Network seems to also perform a denoising due to different noise distributions present in clinical training data.

• Different structure of projection data in both datasets might have an impact on network training.

• Synthetic projections contain significantly more structures over the whole projection compared to clinical 
projection data.

Example projection from the clinical dataset (head scan)

Example projection from the synthetic dataset



Collimation: 64×0.6 mm, reconstructed slice width 0.6 mm; Patient 2 (Slice 75);
Difference images to a WFBP of corresponding projection data with zFFS. 

Synthetic Data With Noise Do Not 
Perform as Good as Without Noise.

• Training with noisy clinical 
data leads objectively to a 
smoother result.

• Quantitatively represented by 
a lower standard deviation.

• Network seems to perform a 
denoising in the prediction 
due to noise in training data.

• Noise distribution of ground 
truth data correlates more with 
the result of the RIDL-CNN 
trained with synthetic data, 
while artifacts are also 
significantly reduced.

Ground Truth
with zFFS

ROI: 
RMSE: 0 HU;

Mean: 33.871±16.527

Without zFFS

RIDL-CNN with
clinical dataset,

3 inputs {-1, 0, +1}

RIDL-CNN with
noise-free synthetic

dataset

RIDL-CNN with
noisy synthetic

dataset

ROI: 
RMSE: 13.782 HU;

Mean: 33.528±15.841

ROI: 
RMSE: 14.834 HU;

Mean: 32.906±16.878

ROI: 
RMSE: 12.367 HU;

Mean: 34.069±12.338

ROI: 
RMSE: 12.987 HU;

Mean: 34.836±12.401

C = 60 HU,
W = 360 HU



Conclusions

• The proposed method can reduce windmill artifacts and 
does not require additional hardware.

• RIDL-CNN trained with noise-free synthetic data could 
reduce windmill artifacts more effectively than a 
corresponding network trained with clinical data.

• Inferior results of the clinical data may be attributed to the 
quantum noise in the clinical dataset.

• Training with clinical and synthetic dataset still can be 
optimized.

• Outlook: 

– Evaluation of network results on clinical patient scans.

– Improvement of the synthetic dataset.



Thank You!

This presentation will soon be available at www.dkfz.de/ct 

Job opportunities through DKFZ’s international PhD or 
Postdoctoral Fellowship programs (www.dkfz.de), or directly 

through Prof. Dr. Marc Kachelrieß (marc.kachelriess@dkfz.de). 


