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Photon-Counting enables
Visualization of Small Details

Reconstruction to mimick Reconstruction of data scanned at
conventional energy-integrating CT, photon-counting CT Naoetom Alpha
e.g. Somatom Flash
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Properties of
Photon-Counting Detectors

« Smaller detector pixels

— can deliver ultra high resolution imaging

— less dose due for conventional spatial resolution! (“small pixel

effect”)

* No electronic noise

— advanced image quality in obese patients and low-dose scans
 No downweighting of lower energy quanta

— Iimproved image contrast

— less dose due to increased iodine CNR? (“iodine effect”)

Intrinsic spectral sensitivy
— established dual energy applications available in any scan

[1] Klein, Kachelrie3, Sawall et al. “Effects of Detector Sampling on Noise Reduction in Clinical Photon-Counting Whole-Body Computed
Tomography.” Investigative Radiology vol. 55(2): 111-119, 2020.

[2] Sawall, KachelrieR et al. “lodine Contrast-to-Noise Ratio Improvement at Unit Dose and Contrast Media Volume Reduction in Whole-Body Photon-
counting CT.” European journal of radiology vol. 126: 108909, 2020.

SIEMENS ..,

Healthineers -’



Energy-Integrating vs.
Photon-Counting Detectors
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Energy-integrating
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Cumulative signal of all detected light pulses Individual signal for each detected photon

Photon-counting detector has several subpixels between lamellae of ASG
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Scatter for Coarse ASG

Energy-integrating Photon-counting = Primary radiation
detector detector Scatter measured by the detector
Scatter attenuated by the ASG
Conventional ASG Coarse ASG
Each pixel surrounded Several subpixel
by ASG surrounded
by ASG
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ASG

Coarse ASG leads to changing scatter intensity between neighboring pixel
depending on the incident angle of the photon
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Scatter for Coarse ASG

Scatter distribution averaged over all detector rows
Four subpixel (S)
merged to one
macropixel (M)
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Scatter for Coarse ASG

left right Scatter distribution averaged over all detector rows
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Scatter for Coarse ASG

left right D
Scatter distribution over center detector column
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Scatter Artifacts of Coarse ASG

Conventional ASG Coarse ASG

Coarse ASG can lead to scatter-induced moiré artifacts.
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Deep Scatter Estimation (DSE)

« Use a deep convolutional neural network to estimate scatter using the
acquired projection data as input.t2

« Train the network to predict Monte Carlo scatter estimates based on the
acquired projection data.l?

« DSE outperforms other scatter estimation techniques.24>

« DSE is much faster than the Monte Carlo simulation.1.25

« DSE can also be trained with measured scatter data.?

« DSE shows great potential to correct for cross-scatter in dual source CT.4°

input: m(1, + IS,MC)| output: I psg target: [, nic

B » 1§

Scatter profile from Monte Carlo simulation
Time: 65 s per projection = 14 h per circle scan

. ‘ 64 x 512 x 32 O

.. . . \ . 3 x 3 convolution, stride 1 + ReLU
Scatter prediction from deep scatter estimation . 2 %16 % 1024 * ® 1 x 1 convolution, stride 1 + ReLU
Time: 3.3 ms per projection = 4 s per circle scan —O 3 x 3 convolution, stride 2 + ReLU
2 x 2 upsampling + ReLU
1 x 8 x 2048 -O— depth concatenate

[1] J. Maier, M. KachelrieR et al. “Deep Scatter Estimation (DSE)“, SPIE 2017 and J. of Nondest. Eval. 37:57, July 2018.

[2] J. Maier, M. KachelrieB et al. “Robustness of DSE*“, Med. Phys. 46(1):238-249, January 2019.

[3] J. Erath, M. KachelrieB et al “Monte-Carlo-Free Deep Scatter Estimation (DSE) for X-Ray CT and CBCT”, RSNA 2019

[4] J. Erath, T. Vo6th, J. Maier, E. Fournié, M. Petersilka, K. Stierstorfer, and M. KachelrieB, “Deep Scatter Correction in DSCT”, CT Meeting August 2020.

[5] J. Erath, T. Vé6th, J. Maier, E. Fournié, M. Petersilka, K. Stierstorfer, and M. KachelrieB, “Deep Learning-Based Forward and Cross-Scatter Correction in DS CT” Med. Phys. 2021
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Training and Validation Data

« Monte Carlo simulation with the geometry of the photon counting CT
scanner NAEOTOM Alpha (Siemens Healthineers)

« 12 patients for training and 4 for validation
« 14 z-positions with 36 projections each simulated for each patient
« 8064 paired scatter and primary data pairs

« Simulation of coarse ASG with macro pixel with detector dimension of
1376 x 144 pixels

« 6 different macro pixels locations

« Smooth only across same macro-pixel locations M(0,0) M(1,0)
14 z osi

21 tlons Training and validation patients with high

ﬂ% 8 variety and different clinical situations,
>\ important to consider scatter-to-primary ratio | VARSI LLE 5,

Example of validation data set:

70 cm

M(0,2) M(1,2)
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Network Architecture

Detector dimension

1376x144 Each channel
Input mapping corresponds to a : :
Limary  Tscatter different pixel position Merging 6 different channels to
p=—In( + ) between the lamallea of obtain total scatter correction term
Io Io the ASG
‘ WS EE IS Different macro pixel locations tOUtpUti 6 channels
(0,0) L B
(0,1) | B |
) P 1
(1.1) P 1
©02) . 1 ! i
(1,2)

688x48x32 ‘ .I ‘| >| .I ’|
344%24x64
‘ ‘ 3x3 Convolution, Stride 2

Ll oe e I .I >hhl ‘ 3x3 Convolution, Stride 1
“ Unpooling + depth concat.
86%x6%256
Iml Skip connection

43%x3x512

- | Reshape
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Predicton of Scatter Intensity

Scatter distribution of left and right columns averaged over all detector rows

— MC Simulation left columns
——DSE left columns

——MC Simulation right columns
——DSE right columns

>
=
7))
(-
)
+—)
E

100 200 300 400 500 600
Detector columns

SIEMENS .-, dkuo

Healthineers -’




Results in Reconstructed Images
Ground Truth

Uncorrected
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Results in Reconstructed Images

Grognd Truth Uncorrected
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Results in Reconstructed Images
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Amplitude of the moiré effect gets corrected from 30 HU to less than 5 HU.
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Ground Truth Uncorrected
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Results in Reconstructed Images
9roun

Simulated Reconstruction C = 0 HU, W =400 HU,
Difference to GT C = 0 HU, W = 50 HU dkfz.



Conclusions

 Smaller detector pixel and coarse anti-scatter grid can lead to
moire artifacts.

« Scatter induced moiré effect can be clearly corrected with deep
learning-based scatter correction.

* With the proposed algorithm the mean absolute error (MAE)
could be reduced from uncorrected about 9 HU to under 1 HU.

« The amplitude of the scatter induced moiré effect can be
corrected from 30 HU to less than 5 HU.

* Next step: apply deep-learning based correction for
measurements.
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This presentation will soon be available at www.dkfz.de/ct.
Job opportunities through DKFZ’s international PhD or Postdoctoral
Fellowship programs (marc.kachelriess@dkfz.de).



