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Motion Compensation
for CT Systems Rotating Slow Compared to the Organ Motion Frequency
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Motion Management 
for CBCT in IGRT

Detector
kV Source

Linear Accelerator

Gantry
Rotation
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4D CBCT Scan 
with Retrospective Gating

Measured projections
assigned to one phase bin

Angular spacing of 
projection bins

Acquisition angle

100 %

0 %

50 %

Amplitude

Time
Projection angle

0 %50 % 0 %50 % 0 %50 % 0 %50 % 0 %50 %

End-Inhale

End-Exhale

Without gating (3D): 
Motion artifacts

With gating (4D): 
Sparse-view artifacts
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• Motion estimation via 
standard 3D-3D registration

• Has to be repeated for each
reconstructed phase

• Streak artifacts from gated reconstructions propagate 
into sMoCo results

4D gated CBCT

A Standard Motion Estimation and 
Compensation Approach (sMoCo)

sMoCo

Li, Koong, and Xing, “Enhanced 4D cone–beam CT with inter–phase motion model,” 
Med. Phys. 51(9), 3688–3695 (2007).
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• Motion estimation only between adjacent phases 

• Incorporate additional knowledge
– A priori knowledge of quasi periodic breathing pattern

– Non-cyclic motion is penalized

– Error propagation due to concatenation is reduced

The Cyclic Motion Estimation and 
Compensation Approach (cMoCo)

Displacement curve
of a fictitious pixel
over complete 
respiratory cycle

w/o temporal constraints

with temporal constraints

Brehm, Paysan, Oelhafen, Kunz, and Kachelrieß, “Self-adapting cyclic registration for motion-
compensated cone-beam CT in image-guided radiation therapy,” Med. Phys. 39(12):7603-7618, 2012.
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Artifact Model-Based MoCo (aMoCo)

Segmented Image3D CBCT

4D gated CBCT 4D Artifact Images

Virtual rawdata:Measured data:

Brehm, Paysan, Oelhafen, and Kachelrieß, “Artifact-resistant motion estimation with a patient-specific 
artifact model for motion-compensated cone-beam CT” Med. Phys. 40(10):101913, 2013.
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Motion Estimation using a
Patient-Specific Artifact Model

Cyclic RegistrationGating and Independent 
Reconstruction

Measured Data Gated 4D CBCT

4D Artifact Images

3D CBCT

Segmented Image

Forward Projections

acMoCo:
Artifact Model-Based 
Motion Compensation

Motion Vector Fields
(induced by artifacts only)

Simulate Motionless 
Projection Data

Motion Vector Fields
(breathing only)

Motion Vector Fields
(induced by breathing

and artifacts)

cMoCo:
Cyclic Motion 
Compensation
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Patient Data – Results

sMoCo
Standard Motion 
Compensation

3D CBCT
Standard

4D gated CBCT 
Conventional 

Phase-Correlated

acMoCo
Artifact Model-Based 
Motion Compensation

C = -200 HU,  W = 1400 HU, displayed with 30 rpm.
Patient data provided by Memorial Sloan–Kettering Cancer Center, New York, NY.
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Spin-Off Effects?
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5 min / bed5 min / bed 1 min / bed1 min / bed

MVFs MVFs

4D gated 4D cMoCo

4D PET/MR Motion Compensation 
MR Results Patient s04

Rank, Heußer, Buzan, Wetscherek, Freitag, Dinkel, Kachelrieß. 4D respiratory motion-compensated image reconstruction 

of free-breathing radial MR data with very high undersampling. Magn Reson Med 77(3):1170-1183, 2017.
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4D gated3D MR: 5 min / bed MR: 1 min / bed

4D cMoCo

0

SUV
8

0

SUV
8

0

SUV
8

0

SUV
8

SUVmean = 18.7 SUVmean = (22.2) SUVmean = 19.9 SUVmean = 19.7

due to the high noise level of 4D gated PET, 
SUVmean was systematically overestimated

4D PET/MR Motion Compensation 
PET Results Patient s01

C. Rank, T. Heußer, A. Wetscherek, M. Freitag, O. Sedlaczek,  H.-P. Schlemmer, and M. Kachelrieß. Respiratory motion 

compensation for simultaneous PET/MR based on highly undersampled MR data. Med. Phys. 43(12):6234-6245, December 2016.
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Is There More?
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Data displayed as:

Heart: 280 bpm

Lung: 150 rpm

Mouse with 150 rpm and 280 bpm.

Mouse with 180 rpm and 240 bpm.
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Data displayed as:

Heart: 180 bpm

Lung: 90 rpm

Mouse with 180 rpm and 240 bpm.
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Data displayed as:

Heart: 90 bpm

Lung: 90 rpm

Mouse with 180 rpm and 240 bpm.
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Data displayed as:

Heart: 0 bpm

Lung: 90 rpm

Mouse with 180 rpm and 240 bpm.
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Mouse with 180 rpm and 240 bpm.

Data displayed as:

Heart: 90 bpm

Lung: 0 rpm
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5D with Double Gating?
Double gating example:

• Cardiac window width: 20%
• Respiratory window width: 10%

• Only 2% of all projections per reconstructed volume

t
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Injection
Techniques1

Tail Vein Injection Retro Bulbar Injection

1 M. Socher, J. Kuntz, S. Sawall, S. Bartling, and M. Kachelrieß. The retrobulbar sinus is superior to the lateral tail vein
for the injection of contrast media in small animal cardiac imaging. Lab. Anim. 48(2), pp. 105-113, February 2014.
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

respiratory

5D Motion Compensation

Brehm, Sawall, Maier, and Kachelrieß, “Cardio-respiratory motion-compensated micro-CT image 
reconstruction using an artifact model-based motion estimation” Med. Phys. 42(4):1948-1958, 2015.
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5D Motion Compensation

Brehm, Sawall, Maier, and Kachelrieß, “Cardio-respiratory motion-compensated micro-CT image 
reconstruction using an artifact model-based motion estimation” Med. Phys. 42(4):1948-1958, 2015.
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respiratory
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5D Motion Compensation

Brehm, Sawall, Maier, and Kachelrieß, “Cardio-respiratory motion-compensated micro-CT image 
reconstruction using an artifact model-based motion estimation” Med. Phys. 42(4):1948-1958, 2015.
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respiratory
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5D Motion Compensation
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5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Brehm, Sawall, Maier, and Kachelrieß, “Cardio-respiratory motion-compensated micro-CT image 
reconstruction using an artifact model-based motion estimation” Med. Phys. 42(4):1948-1958, 2015.
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7200 Projections
3D CBCT 5D double-gated CBCT 5D Motion 

Compensation

The images show a fixed respiratory and cardiac phase.

Brehm, Sawall, Maier, and Kachelrieß, “Cardio-respiratory motion-compensated micro-CT image 
reconstruction using an artifact model-based motion estimation” Med. Phys. 42(4):1948-1958, 2015.
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3D CBCT 5D double-gated CBCT 5D Motion 
Compensation

The images show a fixed respiratory and cardiac phase.

3600 Projections

Brehm, Sawall, Maier, and Kachelrieß, “Cardio-respiratory motion-compensated micro-CT image 
reconstruction using an artifact model-based motion estimation” Med. Phys. 42(4):1948-1958, 2015.
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3D CBCT 5D double-gated CBCT 5D Motion 
Compensation

The images show a fixed respiratory and cardiac phase.

720 Projections

Brehm, Sawall, Maier, and Kachelrieß, “Cardio-respiratory motion-compensated micro-CT image 
reconstruction using an artifact model-based motion estimation” Med. Phys. 42(4):1948-1958, 2015.
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Spin-Off Effects?
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3D
motion average

5D
resp & card gated

r = 1, c-loop

5D
resp MoCo & card gated

r = 1, c-loop

5D MoCo
resp & card MoCo

r = 1, c-loop

total acquisition time: 1 min 55 s, radial undersampling = 36

5D MR Motion Compensation
Results Patient c12
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3D PET
motion average

5D double-gated PET
r = 1, c-loop

5D MoCo PET
r = 1, c-loop

5D MoCo MR
r = 1, c-loop

0

SUV
7

0

SUV
7

0

SUV
7

5D PET/MR Motion Compensation
Results Patient s04
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Photon Counting CT
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Gd2O2S
7.44 g/cm3

CdTe
5.85 g/cm3
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i.e. max O(40∙106) cpsi.e. max O(40∙103) cps

Requirements for CT: up to 109 x-ray photon counts per second per mm2.
Hence, photon counting only achievable for direct converters.

-

Indirect Conversion (Today)
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Energy-Selective Detectors:
Improved Spectroscopy, Reduced Dose?

Spectra as seen after having passed a 32 cm water layer.

Ideally, bin spectra do not overlap, …
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Energy-Selective Detectors:
Improved Spectroscopy, Reduced Dose?

Spectra as seen after having passed a 32 cm water layer.

… realistically, however they do! 
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Existing Systems 2020
Setup Detector

Pixel size 

(mm2)
FOV Thresholds Acquisition Extra 

Philips Healthcare

(preclinical)

[1, 2, 3]

Preclinical CdZnTe 0.5 × 0.5 16.8 cm
5

(30-98 keV)
2400 fps 

MARS Bioimaging

(preclinical) [4, 5]

Preclinical

MARS 

orthopaedic

imaging-

cooming

soon

2 mm 

CdZnTe;

five

medipix3RX 

chips in a 

row (70 mm 

× 14 mm)

0.11 × 0.11 10 cm
8

(10-120 keV)

Scan time: 8 min

for a sample with

30 mm diameter and 

15 mm length

Charge 

summing 

mode

Siemens Somatom

CounT [6]

Clinical,

whole body

Dual-source

CT with one 

PC detector 

of 1.6 mm 

CdTe

0.225 × 0.225

or 0.45 × 0.45 

or 0.9 × 0.9

27.5 cm
4

(20-90 keV)

2304 fps

4608 fps

KTH Royal 

Institute of

Technology,

Stockholm [7]

Table-top

Translating

detector

30 mm 

silicon strip
0.4 × 0.5 

0.93 cm

(need to 

translate the 

detector 

several times)

8 300 Mcps/mm2 Edge-on 

design

Center for In Vivo 

Microscopy,

Duke University, 

Durham 

(preclinical) [8, 9]

Preclinical

Table-top
1 mm CdTe 0.15 × 0.15 ~6.5 cm 4

DKFZ

(preclinical)
Preclinical 1 mm CdTe 0.15 × 0.15 ~15 cm

4

(9-90 keV)

200 fps

100 Mcps/mm2
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Non-Proprietary Relevant PC Detectors
Sensor Pixel Sensor Area Bins Acquisition Features

Medipix3RX1,2 Si or CdTe

55 µm
1.4 × 1.4 cm2

3-side buttable

2 61 Mcps/mm2 Charge summing mode: half 

the number of thresholds, 

count rate reduced by a 

factor of 4 to 5
110 µm 8 15 Mcps/mm2

Pixirad Module3 CdTe

0.65 mm
55  µm

3.1 × 2.5 cm2

2-side buttable
2

200 fps

162 Mcps/mm2 Hexagonal pixel

Dectris Säntis4 CdTe 150  µm 30.8 × 3.8 cm2 4
200 fps

100 Mcps/mm2

Direct conver-

sion XC Thor5

CdTe

0.75 or 2.0 mm
100  µm

up to 

5.12 × 40.0 cm2 2
300 fps

200 Mcps/mm2

Charge

sharing correction

3
8

.5
5

 
m

m

Medipix Pixirad Säntis XC Thor

1 Ballabriga, et al. (2013). The medipix3RX: A high resolution, zero dead-time pixel detector readout chip 
allowing spectroscopic imaging. Journal of Instrumentation.

2 Frojdh, et al. (2014). Count rate linearity and spectral response of the Medipix3RX chip coupled to a 300μm 
silicon sensor under high flux conditions. Journal of Instrumentation.

3 https://indico.cern.ch/event/284070/sessions/53910/attachments/524517/723391/Ravenna_Bellazzini1.pdf
4 Information provided by Dectris Ltd.
5 https://directconversion.com/product/xc-thor/
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Diagnostic CT (Conventional Detector) 
of a Low Contrast Phantom

Photon Counting Detector CT 
of a Low Contrast Phantom

Photon Counting Detector
Phantom

C = 0 HU, W = 80 HU 

Same dose. At same spatial resolution 
(MTF) better image quality.

Diagnostic routine head protocol. 
34 mGy CTDIvol.

EI PC
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Siemens CounT CT System

Gantry from a clinical dual source scanner

A: conventional CT detector  (50.0 cm FOV)

B: Photon counting detector (27.5 cm FOV)

Experimental CT, not commercially available.

BA

PC-UHR Mode
0.25 mm pixel size

PC-Macro Mode
0.50 mm pixel size

EI detector
0.60 mm pixel size

Readout Modes of the CounT
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Advantages of Photon Counting CT
• No reflective gap between detector pixels

– Higher geometrical efficiency

– Less dose

• No electronic noise
– Less dose for infants

– Less noise for obese patients

• Counting
– Swank factor = 1 = maximal

– Higher weights on low energies = good for iodine contrast

• Energy bin weighting
– Lower dose/noise 

– Improved iodine CNR

• Smaller pixels (to avoid pileup)
– Higher spatial resolution

– Lower dose/noise at conventional resolution

• Spectral information on demand
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Dark Image of Photon Counter 
Shows Background Radiation

18 frames, 5 min integration time per frame

Santis: 1 mm CdTe, 150 µm pixel size, 4 thresholds.

C/W = 3 cnts/8 cnts

C/W = 1 cnts/2 cntsC/W = 0 a.u./70 a.u.

C/W = 30 a.u./450 a.u.

A
c

c
u

m
u

la
te

d
S

ig
n

a
l

E
v
e

n
ts

 p
e

r 
F

ra
m

e

Photon Counting (Dectris Santis)Energy Integrating (Dexela)

No dark current.
No readout noise. 

Single events visible!

Dark current dominates.
Readout noise only. 

Single events hidden!
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Photon Counting used to Maximize CNR

• With PC energy bins can be weighted individually.

• To optimize the CNR the optimal bin weighting factor 
is given by (weighting after log):

• The resulting CNR is

• At the optimum this evaluates to
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Energy Integrating vs. Photon Counting
with 1 bin from 20 to 140 keV

CNR = 2.95 

Energy Integrating Photon CountingPC minus EI

CNR = 2.11

40% CNR improvement or
49% dose reduction achievable
due to improved Swank factor 

and more weight on low energies 
(iodine contrast benefits). 20 140

#
 p

h
o

to
n

s

Energy / keV

20 140

#
 p

h
o

to
n

s

Energy / keV

Images: C = 0 HU, W = 700 HU, difference image: C = 0 HU, W = 350 HU, bins start at 20 keV
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Energy Integrating vs. Photon Counting
with 4 bins from 20 to 140 keV

CNR = 4.19 

Energy Integrating Photon CountingPC minus EI

CNR = 2.11

99% CNR improvement or
75% dose reduction achievable 
due to improved Swank factor 

and optimized energy weighting.
20 140

#
 p

h
o

to
n

s

Energy / keV

Images: C = 0 HU, W = 700 HU, difference image: C = 0 HU, W = 350 HU, bins start at 20 keV

20 70 120

#
 p

h
o

to
n

s

Energy / keV
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CdTe
5.85 g/cm3

-
+

+ +
+
++

+ +

-
--

-- ---

Spatial Resolution

• Small electrodes are 
necessary to avoid pile-up.

• High bias voltages (around 
300 V) limit charge 
diffusion and thus blurring 
in the non-structured 
semiconductor layer.

• Thus, higher spatial 
resolution is achievable.



Ultra-High Resolution on Demand

Energy Integrating CT
(Somatom Flash)

Photon Counting CT
(Somatom CounT in UHR-Mode)

Courtesy of Cynthia McCollough, Mayo Clinic, Rochester, USA.
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Noise

ResolutionHigh Medium Low Very Low0

Small detector pixels

Large detector pixels

Less noise with small pixels at the same
spatial resolution (e.g. B70f)

Better spatial resolution with small
pixels at the same noise (e.g. 25 HU)

Kachelrieß, Kalender. Med. Phys. 32(5):1321-1334, May 2005

150 HU

300 HU

The “Small Pixel Effect” 



PC-UHR, B80f, 0.75 mm slice thickness 

EI, B80f, 0.75 mm slice thickness 

PC-UHR, U80f, 0.75 mm slice thickness 

PC-UHR, U80f, 0.25 mm slice thickness 

± 75 HU

± 53 HU

± 131 HU

± 214 HU

All images
reconstructed
with 10242

matrix and
0.15 mm slice 
increment.
C = 1000 HU
W = 3500 HU

Data courtesy
of the
Institute of
Forensic
Medicine of
the University 
of Heidelberg
and of the
Division of
Radiology of
the German 
Cancer 
Research 
Center
(DKFZ)

x

z

10% MTF: 19.1 lp/cm
10% MTF:17.2 lp/cm
xy FWHM: 0.48 mm
z FWHM: 0.40 mm

CTDIvol: 16.0 mGy

10% MTF: 19.1 lp/cm 
10% MTF:17.2 lp/cm
xy FWHM: 0.48 mm
z FWHM: 0.67 mm

CTDIvol: 16.0 mGy

10% MTF: 9.3 lp/cm 
10% MTF:10.5 lp/cm
xy FWHM: 0.71 mm
z FWHM: 0.67 mm

CTDIvol: 16.0 mGy

10% MTF:  9.3 lp/cm 
10% MTF:10.5 lp/cm
xy FWHM: 0.71 mm
z FWHM: 0.67 mm

CTDIvol: 16.0 mGy
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L. Klein, C. Amato, S. Heinze, M. Uhrig, H.-P. Schlemmer, M. Kachelrieß, and S. Sawall. 
Effects of Detector Sampling on Noise Reduction in a Clinical Photon Counting 

Whole-Body CT. Investigative Radiology, vol. 55(2), in press, February 2020.

± 94 HU

MTF10% = 10.8 lp/cm

± 94 HU

MTF10% = 10.0 lp/cm

Energy Integrating Detector (B70f) Photon Counting Detector (B70f)

Acquisition with EI:
• Tube voltage of 120 kV
• Tube current of 300 mAs
• Resulting dose of 

CTDIvol 32 cm = 22.6 mGy

Acquisition with UHR:
• Tube voltage of 120 kV
• Tube current of 180 mAs
• Resulting dose of 

CTDIvol 32 cm = 14.6 mGy

C = 50 HU, W = 1500 HU
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MIP of low threshold images (20 keV)
S

c
a
n

 1

Coronal

S
c
a
n

 2

Sagittal

Scan at 60 kV of the 
late phase of iodine 
based contrast agent
(iodine in the bladder). 
Part of the contrast 
agent was injected 
outside of the vessel 
(enhancement in the 
tail).
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MIP of iodine and bone
S

c
a
n

 1

Coronal

S
c
a
n

 2

Sagittal

Energy thresholds at 20 and 
32 keV.
Iodine k-edge at 33 keV.

Possibility to 
unambiguously differentiate 
iodine and bone.

Bladder

Urine (with iodine) 
on the fur

Iodine in the tail
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Deep Learning in CT
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Fully Connected Neural Network

• Each layer fully connects to previous layer

• Difficult to train (many parameters in W and b)

• Spatial relations not necessarily preserved

Hidden Hidden Output Hidden Input 
e.g. 512×512×3 pixels
e.g.

e.g. 1 label
e.g. Copenhagen

Output:Input:
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Convolutional Neural Network (CNN)
• Replace dense W in                                    by a sparse 

matrix W with sparsity being of convolutional type.

• CNNs consist (mainly) of convolutional layers.

• Convolutional layers are not fully connected.

• Convolutional layers are connected by small, say 
3×3, convolution kernels whose entries need to be 
found by training.

• CNNs preserve spatial relations to some extent.

G kernels 
3×3×F

Src
512×512×F

Dst
512×512×G

Attention: No convolution in depth direction! 
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U-Net1

3 x 3 Convolution, ReLU

2 x 2 Max. Pooling
2 x 2 Upsampling
Depth Concatenate

1 x 1 Convolution, ReLU

Input:

Output:

384 × 256 × 4

12 × 8 × 480

24 × 16 × 320

48 × 32 × 160

96 × 64 × 80

192 × 128 × 40

6 × 4 × 960

Concatenative skip connection

1O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for
biomedical image segmentation. Proc. MICCAI:234-241, 2015. 
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Generative Adversarial Network1

(GAN)
• Useful, if no direct ground truth (GT) is available, the 

training data are unpaired, unsupervised learning

Counterfeiter
Generator G

Treasury
Data pool

generate
fake currency

$

Police
Discriminator D

true = 1, fake = 0
sigmoid in-between

detect
fake currency

provide
true data

1I. Goodfellow et al. Generative Adversarial Nets, arXiv 2014
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Metal Artifact Reduction Example

• Deep CNN-driven patch-based combination of the 
advantages of several MAR methods trained on 
simulated artifacts

• followed by segmentation into tissue classes

• followed by forward projection of the CNN prior and 
replacement of metal areas of the original sinogram

• followed by reconstruction
Yanbo Zhang and Hengyong Yu. Convolutional Neural Network Based Metal Artifact Reduction in X-Ray

Computed Tomography. TMI 37(6):1370-1381, June 2018.



80

= input feature 1

= input feature 2 = input feature 3

= output

= proposed method
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Sparse View Restoration Example

Yo Seob Han, Jaejun Yoo and Jong Chul Ye. Deep Residual Learning for Compressed Sensing CT 
Reconstruction via Persistent Homology Analysis. ArXiv 2016.
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Very 
impressive, 

but…

Very 
impressive, 

but…

Very 
impressive, 

but…
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Noise Removal Example
• Task: Reduce noise from low dose CT images.

• A conditional generative adversarial networks (GAN) is used

• Generator G: 

– 3D CNN that operates on small cardiac CT sub volumes

– Seven 3×3×3 convolutional layers yielding a receptive field of 15×15×15 
voxels for each destination voxel

– Depths (features) from 32 to 128

– Batch norm only in the hidden layers

– Subtracting skip connection

• Discriminator D:

– Sees either routine dose image or a 
generator-denoised low dose image 

– Two 3×3×3 layers followed by several
3×3 layers with varying strides

– Feedback from D prevents smoothing.

• Training:
– Unenhanced (why?) patient data acquired 

with Philips Briliance iCT 256 at 120 kV.

– Two scans (why?) per patient, one with 0.2 mSv and one with 0.9 mSv effective dose.

J. Wolterink, T. Leiner, M. Viergever, and I. Išgum. Generative Adversarial Networks for Noise 
Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.
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Low dose image (0.2 mSv)

Noise Removal Example

J. Wolterink, T. Leiner, M. Viergever, and I. Išgum. Generative Adversarial Networks for Noise 
Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.
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iDose level 3 reconstruction (0.2 mSv)

Noise Removal Example

J. Wolterink, T. Leiner, M. Viergever, and I. Išgum. Generative Adversarial Networks for Noise 
Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.
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Denoised low dose image (0.2 mSv)

Noise Removal Example

J. Wolterink, T. Leiner, M. Viergever, and I. Išgum. Generative Adversarial Networks for Noise 
Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.
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Normal dose image (0.9 mSv)

Noise Removal Example

J. Wolterink, T. Leiner, M. Viergever, and I. Išgum. Generative Adversarial Networks for Noise 
Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.



88

Deep Scatter Estimation

???

In real time?
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• Simulation of photon trajectories according to 
physical interaction probabilities.

• Simulating a large number of photon trajectories well 
approximates the actual scatter distribution.

Monte Carlo Scatter Estimation

Scatter distribution of an 
incident needle beam

Complete scatter 
distribution
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Deep Scatter Estimation
Network architecture & scatter estimation framework

3 x 3 Convolution, ReLU

2 x 2 Max. Pooling
2 x 2 Upsampling
Depth Concatenate

1 x 1 Convolution, ReLU

Input:

Output:
scatter estimate 384 × 256 × 4

12 × 8 × 480

24 × 16 × 320

48 × 32 × 160

96 × 64 × 80

192 × 128 × 40

6 × 4 × 960Projection data

Downsampling
and application 

of operator

Upsampling
to original 

size

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Monte Carlo

Deep Scatter Estimation (DSE)

Train a deep convolutional neural network (CNN) to 
estimate scatter using a function of the acquired 
projection data as input.

Scatter estimate Input:

Convolutional neural network

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Results on Simulated Projection Data
Scatter ground 

truth (GT)

Primary 

intensity

(Kernel – GT) 

/ GT 

(Hybrid - GT)

/ GT

(DSE – GT)    

/ GT

View #1

View #2

View #3

View #4

View #5

C = 0 %, W = 50 %C = 0 %, W = 50 %C = 0 %, W = 50 %C = 0.5, W = 1.0 C = 0.04, W = 0.04

14.1%
mean 

absolute
percentage 

error
over
all

projections

7.2%
mean 

absolute 
percentage

error
over
all

projections

1.2%
mean 

absolute
percentage 

error
over
all

projections

DSE trained to estimate scatter from primary plus scatter: High accuracy
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Reconstructions of Measured Data

No Correction
Kernel-Based 

Scatter Estimation
Hybrid Scatter 

Estimation
Deep Scatter 
EstimationSlit Scan
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C = 0 HU, W = 1000 HU
J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.

J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Truncated DSE1,2

FOM

FOM

Ground  truth Uncorrected MC-corrected DSE

40 × 40 cm2 

flat detector

40 × 40 cm2 

flat detector

To learn why MC fails at truncated data and what significant efforts are necessary to cope with that situation see [Kachelrieß et al. 
Effect of detruncation on the accuracy of MC-based scatter estimation in truncated CBCT. Med. Phys. 45(8):3574-3590, August 2018].

A simple detruncation was applied to the rawdata before reconstruction. Images were clipped to the FOM before display. C = -200 HU, W = 1000 HU.

1J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE) for truncated cone-beam CT (CBCT). RSNA 2018.
2J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Results

Values shown are the mean absolute percentage errors (MAPEs) of the testing data.
Note that thorax and head suffer from truncation due to the small size of the 40×30 cm flat detector.

DSE Head Thorax Abdomen

Head 1.2 21.1 32.7

Thorax 8.8 1.5 9.1

Abdomen 11.9 10.9 1.3

All data 1.8 1.4 1.4

KSE Head Thorax Abdomen

Head 14.5 26.8 32.5

Thorax 16.2 18.5 19.4

Abdomen 16.8 22.1 17.8

All data 14.9 20.5 19.3

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Deep Dose Estimation

???

In real time?
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• Combine fast and accurate CT dose estimation using 
a deep convolutional neural network.

• Train the network to reproduce MC dose estimates 
given the CT image and a first-order dose estimate.

Deep Dose Estimation (DDE)

256 × 256 x 48 × 16

16 × 16 × 3 × 256

3 × 3 × 3 Convolution (stride = 1), ReLU 3 × 3 × 3 Convolution (stride = 2), ReLU 2 × 2 × 2 Upsampling1 × 1 × 1 Convolution (stride = 1), ReLU

Depth concatenate

128 × 128 x 24 × 32

64 × 64 x 12 × 64

32 × 32 x 6 × 128

2-channel input:

CT image

MC-dose1

target:

1st order dose

J. Maier, E. Eulig, S. Sawall, and M. Kachelrieß. Real-time patient-specific CT dose estimation using a deep convolutional neural 
network, Proc. IEEE MIC 2018 and ECR Book of Abstracts 2019. Best Paper within Machine Learning at ECR 2019!

1M. Baer, M. Kachelrieß. 
Phys. Med. Biol. 57, 2012. 
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Results
Thorax, tube A, 120 kV, no bowtie

CT image First order dose

MC ground truth DDE Relative error

C =   0% 
W = 40%

MC DDE

48

slices
1 h 0.25 s

whole 

body
20 h 5 s

MC uses 16 CPU kernels
DDE uses one Nvidia Quadro P600 
GPU

DDE training took 74 h for 300 epochs, 
1440 samples, 48 slices per sample

J. Maier, E. Eulig, S. Sawall, and M. Kachelrieß. Real-time patient-specific CT dose estimation using a deep convolutional neural 
network, Proc. IEEE MIC 2018 and ECR Book of Abstracts 2019. Best Paper within Machine Learning at ECR 2019!
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Deep Cardiac Motion Compensation

???
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Motion Compensation for Cardiac CT

Input: CT 
image with 

motion 
artifacts

Output: 
motion 
direction 
(to be used 
by MoCo 
recon)

Deep MoCo

uncorrected

GT

J. Maier, S. Lebedev, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, and M. Kachelrieß .Coronary artery motion compensation for 
short-scan cardiac CT using a spatial transformer network. Conference Program of the 6th International CT-Meeting, August 2020. 
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Deep PAMoCo
Network architecture

Input: Partial angle reconstructions

Spatial 
transformer 

module

J. Maier, S. Lebedev, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, and M. Kachelrieß .Coronary artery motion compensation for 
short-scan cardiac CT using a spatial transformer network. Conference Program of the 6th International CT-Meeting, August 2020. 
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Results
Measurements, patient 1

C = 1000 HU
W = 1000 HU
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J. Maier, S. Lebedev, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, and M. Kachelrieß .Coronary artery motion compensation for 
short-scan cardiac CT using a spatial transformer network. Conference Program of the 6th International CT-Meeting, August 2020. 
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Results
Measurements, patient 2
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C = 1000 HU
W = 1000 HU

J. Maier, S. Lebedev, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, and M. Kachelrieß .Coronary artery motion compensation for 
short-scan cardiac CT using a spatial transformer network. Conference Program of the 6th International CT-Meeting, August 2020. 
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Results
Measurements, patient 3
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C = 1100 HU
W = 1000 HU

J. Maier, S. Lebedev, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, and M. Kachelrieß .Coronary artery motion compensation for 
short-scan cardiac CT using a spatial transformer network. Conference Program of the 6th International CT-Meeting, August 2020. 
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Thank You!

Job opportunities through DKFZ’s international PhD or 
Postdoctoral Fellowship programs (www.dkfz.de), or directly 

through Marc Kachelriess (marc.kachelriess@dkfz.de). 

Parts of the reconstruction software were provided by 
RayConStruct® GmbH, Nürnberg, Germany.


