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Nurnberg, Germany.

Aortic dissection during pregnancy. Image courtesy of PD Dr. Matthias May, University of Erlangen-
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Figure not drawn to scale. Type and order of prefiltration may differ from scanner to scanner. dkfz
o

Depending on the selected protocol filters are changed automatically (e.g. small bowtie for pediatric scans).
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Lung Cancer Screening CT Protocols Version 5.0 24 July 2019

LUNG CANCER SCREENING CT (selected SIEMENS scanners, continued)
TOPOGRAM: PA; scan from top of shoulder through mid-liver.

SIEMENS

(Back to INDEX)
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AAPM protocols for low dose lung cancer screening, AAPM 2019

dkfz.
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Figure not drawn to scale. Type and order of prefiltration may differ from scanner to scanner. dkfz
o

Depending on the selected protocol filters are changed automatically (e.g. small bowtie for pediatric scans).
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Figure not drawn to scale. Type and order of prefiltration may differ from scanner to scanner. dkfz
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Depending on the selected protocol filters are changed automatically (e.g. small bowtie for pediatric scans).
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Narrow Cone Wide Cone

High Tube Power Low Tube Power

... at the same spatial resolution
Onset of target melting (rule of thumb)!: 1 W/pm

1 D.E. Grider, A. Writh, and P.K. Ausburn. Electron Beam Melting in

Microfocus X-Ray Tubes. J. Phys. D: Appl. Phys 19:2281-2292, 1986



Lung Cancer Screening
* From Lung Screening Program at UCLA
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Courtesy of Prof. Michael McNitt Gray, UCLA dkfz.



European Journal of Radiclogy 84 (2015) 1608-1613

Contents lists available at ScienceDirect
RADIOLOC

European Journal of Radiology

journal homepage: www.elsevier.com/locatefejrad

Unenhanced third-generation dual-source chest CT using a tin filter @imm‘
for spectral shaping at 100 kVp

Holger Haubenreisser=*, Mathias Meyer*, Sonja Sudarski®, Thomas Allmendinger b
Stefan O. Schoenberg?, Thomas Henzler®

Anstitute of Clintcal Radiolegy and Nuclear Medicine, University Medical Center Mannhetm, Medical Faculty Mannhetm, Hetdelberg University, Germany T < 5 7 3 -
b o ’
Stemens Healthcare Sector, CT Division, Forchhetm, Germany 100 kVp with spectral shaping. (A and B) Lung nodules, (C) atypical pneumeonia, (D) pneumocystis pneumonia,

All images were reconstructed with a slice thickness of 1.5 mm
in the axial and coronal planes using a corresponding lung ker-
nel (3rd generation DSCT: BI57; 2nd generation DSCT: 170f), with
the 3rd generation DSCT utilizing a novel iterative reconstruc-
tion technique (Adaptive Model-based Iterative Reconstruction
(ADMIRE), Siemens Healthcare, Forchheim, Germany). This algo-
rithm was described in detail in a recent study [9]. The 2nd
generation DSCT utilized a previously described iterative recon-
struction algorithm (Sinogram Affirmed Iterative Reconstruction
(SAFIRE), Siemens Healthcare, Forchheim, Germany). The iterative
reconstruction algorithm was set at a level of 3 for all reconstruct-
ions, The iteration level of 3 was chosen since the retrospective
studies from the 2nd generation DSCT were all performed with a
strength level of 3. That strength level resulted in the best image
quality based on our experience and was clinically performed in all
retrospectively included studies on the 2nd generation DSCT. Fur-
ther, initial results in a phantom study showed that iterative levels
of 3 and 5 yield diagnostically acceptable results [9]. The images
were then exported to an offline workstation (Aycan Osirix Pro 2,

0:20 mSv (_’]:00 k\V Sn) . 3 Aycan, Wiirzburg, Germany) for all data analysis.

(A) 100 kVp without spectral shaping (CTDI,, 3.8 mGy; DLP 137 mGy cm). (B) 100 kVp with spectral shaping (CTDI,y 0.32 mGy; DLP 11 mGy cm

Dosimetric parameters for both protocols.

Reference mAs Effective mAs CTDI (mGy) DLP (mGy cm) Equiv. dose (mSv)

Group A 96 167.5 £ 108.0 0.49 + 0.18 17.7 £ 6.8 0.32 £0.12
Group B 96 79+7.0 49+19 166.9 + 66.1 30£1.2

dkfz.




Dose Reduction by Patient-Specific

Tin or Copper Prefilterst?

1000 mAs Limit, 70-150 kV, 10 kV steps

Child
(15 cm x 10 cm)

Y

Adult
(30cm x 20 cm) &

Obese
(50 cm x 40 cm) +

Soft tissue (basis)

30 mAs, 90 kV

100 mAs, 130 kV

600 mAs, 150 kV

Soft tissue, Sn

0.6 mm, 1000 mAs, 80 kV

1.0 mm, 1000 mAs, 120 kV

0.2 mm, 870 mAs, 150 kV

14% — 19% 32% — 36% 25% — 57%
Soft tissue. Cu 1.6 mm, 1000 mAs, 70 kV 3.1 mm, 1000 mAs, 120 kV 0.8 mm, 1000 mAs, 150 kV
’ 17% , 10% 31% _, 360, 29% _, 5794
lodine (basis) 50 mAs, 70 kV 120 mAs, 90 kV 720 mAs, 120 kV

lodine, Sn

0 mm, 50 mAs, 70 kV

0.1 mm, 1000 mAs, 70 kV

0.0 mm, 1000 mAs, 110 kV

0% 40% 26%._, 7904
lodine. Cu 0.1 mm, 58 mAs, 70 kV 0.4 mm, 1000 mAs, 70 kV 0.1 mm, 1000 mAs, 110 kV
’ 3% 44% 28%._, go0s

1Steidel, Maier, Sawall, KachelrieB. Tin or Copper Prefilters for Dose Reduction in Diagnostic Single Energy CT? RSNA 2020.

dkfz.

2Steidel, Maier, Sawall, KachelrieRR. Dose Reduction through Patient-Specific Prefilters in Diagnostic Single Energy CT. RSNA 2020.




Dose Reduction by Patient-Specific

Tin or Copper Prefilterst?

5000 mAs Limit, 70-150 kV, 10 kV steps

Child
(15 cm x 10 cm)

Y

Adult
(30cm x 20 cm) &

Obese
(50 cm x 40 cm) +

Soft tissue (basis)

30 mAs, 90 kV

100 mAs, 130 kV

600 mAs, 150 kV

Soft tissue, Sn

0.8 mm, 5000 mAs, 70 kV

1.6 mm, 5000 mAs, 110 kV

1.7 mm, 5000 mAs, 150 kV

16% — 19% 34% — 36% 50% — 57%
Soft tissue. Cu 2.5 mm, 5000 mAs, 70 kV 5.2 mm, 5000 mAs, 110 kV 4.7 mm, 5000 mAs, 150 kV
’ 18% _, 19% 33% _, 360 47% , 579
lodine (basis) 50 mAs, 70 kV 120 mAs, 90 kV 720 mAs, 120 kV

lodine, Sn

0 mm, 50 mAs, 70 kV

0.1 mm, 1000 mAs, 70 kV

0.1 mm, 5000 mAs, 80 kV

0% 40% 67% _, 7994
lodine. Cu 0.1 mm, 58 mAs, 70 kV 0.7 mm, 1600 mAs, 70 kV 0.2 mm, 5000 mAs, 80 kV
’ 3% 44% 70% _, go0s

1Steidel, Maier, Sawall, KachelrieB. Tin or Copper Prefilters for Dose Reduction in Diagnostic Single Energy CT? RSNA 2020.

dkfz.

2Steidel, Maier, Sawall, KachelrieRR. Dose Reduction through Patient-Specific Prefilters in Diagnostic Single Energy CT. RSNA 2020.




Dose Reduction by Patient-Specific

5000 mAs Limit

Tin or Copper Prefilterst?

Child
(15 cm x 10 cm)

Y

Adult
(30cm x 20 cm) &

Obese
(50 cm x 40 cm) +

Soft tissue (basis)

30 mAs, 90 kV

100 mAs, 130 kV

600 mAs, 150 kV

Soft tissue, Sn

0.8 mm, 5000 mAs, 70 kV

1.4 mm, 5000 mAs, 105 kV

1.7 mm, 5000 mAs, 150 kV

16% — 19% 35% — 36% 50% — 57%
Soft tissue. Cu 2.2 mm, 5000 mAs, 65 kV 4.3 mm, 5000 mAs, 105 kV 4.7 mm, 5000 mAs, 150 kV
: 18% _, 100 34% _, 560, AT% _, 579
lodine (basis) 50 mAs, 70 kV 120 mAs, 90 kV 720 mAs, 120 kV

lodine, Sn

0 mm, 210 mAs, 50 kV

0.2 mm, 5000 mAs, 60 kV

0.1 mm, 5000 mAs, 85 kV

39% 519%_, cao4 67% _, g106
lodine. Cu 0.5 mm, 5000 mAs, 45 kV 0.6 mm, 5000 mAs, 60 kV 0.2 mm, 5000 mAs, 80 kV
’ 59% _, 679 57% _, egu 70% _, gy

1Steidel, Maier, Sawall, KachelrieB. Tin or Copper Prefilters for Dose Reduction in Diagnostic Single Energy CT? RSNA 2020.

dkfz.

2Steidel, Maier, Sawall, KachelrieRR. Dose Reduction through Patient-Specific Prefilters in Diagnostic Single Energy CT. RSNA 2020.




We want

We get

Prefilters

— a significant dose reduction
— improved image quality
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Photon Counting

Photon counting (here: Dectris detector), C/W=1 cnts/2 cnts




Indirect Conversion (Today) Direct Conversion (Future)

= PC

(energy integrating) (photon counting)
+3+
+ ++ =1kV
8z K&
=
§S 7.44 g/lcm3
o =2 AN
2 3 -
ol -
= o=
pile up
/problem
i.e. max O(40-103) cps i.e. max O(40-10°) cps

Requirements for CT: up to 10° x-ray photon counts per second per mm?2, dkfz
@

Hence, photon counting only achievable for direct converters.



Ideally, bin spectra do not overlap, ...

Spectra as seen after having passed a 32 cm water layer. difz.



... realistically, however they do!

Spectra as seen after having passed a 32 cm water layer. dk‘fz.



SIEMENS

SOMATOM CounT




Siemens CounT CT System

Gantry from a clinical dual source scanner
conventional CT detector (50.0 cm FOV)
B: Photon counting detector (27.5 cm FOV)

Readout Modes of the CounT

PC-UHR Mode PC-Macro Mode El detector
0.25 mm pixel size  0.50 mm pixel size 0.60 mm pixel size

Experimental CT, not commercially available. dkfz.



Advantages of Photon Counting CT

* No reflective gaps between detector pixels
— Higher geometrical efficiency
— Less dose

* No electronic noise
— Less dose for infants
— Less noise for obese patients

« Counting

— Swank factor = 1 = maximal

— “lodine effect” due to higher weights on low energies
 Energy bin weighting

— Lower dose/noise

— Improved iodine CNR

« Smaller pixels (to avoid pileup)
— Higher spatial resolution
— “Small pixel effect” i.e. lower dose/noise at conventional resolution

« Spectral information on demand



Photon Counting used to Maximize CNR

With PC energy bins can be weighted individually.

To optimize the CNR the optimal bin Welghtlng factor
IS given by (weighting after loQ): . -

The resulting CNR is

(2_p, wo Cy)?

CNR? =
Do w2V,

At the optimum this evaluates to

CNR? =) CNR;}

b=1



Energy Integrating vs. Photon Countin
with 4 bins from 20 to 140 keV

Energy Integrating PC minus El Photon Counting

S )t e S

CNR =2.11 CNR =4.19
0 99% CNR improvement or
g 75% dose reduction achievable £
= due to improved Swank factor =
— and optimized energy weighting.
20 140 20 70 120
Energy / keV Energy / keV

Images: C =0 HU, W =700 HU, difference image: C =0 HU, W = 350 HU, bins start at 20 keV dk e




Thaea “Qrmall Dival Effanrt?

Noise€
A
300 HU+
150 HU <—>¢/
MTF?(u)
2 2 2
o0“ = [dra®(x) = |duA®(u) = [du
0= [dede) = [dua(w T
! I : : >
0 High Medium Low Very Low Resolution

Kachelriel3, Kalender. Med. Phys. 32(5):1321-1334, May 2005 dkfz.




‘ PC UHR U80f 0 25 mm sllce thlckness
\i214HU ' bR

El, B80f, 0.75 mm slice thickness
+ 75 HU




L. Klein, C. Amato, S. Heinze, M. Uhrig, H.-P. Schlemmer, M. Kachelriel3, and S. Sawall.
Effects of Detector Sampling on Noise Reduction in a Clinical Photon Counting
Whole-Body CT. Investigative Radiology, vol. 55(2), in press, February 2020.

Energy Integratlng Detector (B70f) Photon Countlng Detector (B70f)

Acquisition with El: Acquisition with UHR:

« Tube voltage of 120 kV « Tube voltage of 120 kV

 Tube current of 300 mAs  Tube current of 180 mAs

* Resulting dose of * Resulting dose of
CTDl,q 32 cm = 22.6 MGy CTDlI, 32 cm = 14.6 MGy

C =50 HU, W = 1500 HU dkfz.



Deep Learning




Metal Artifact Reduction Example

 Deep CNN-driven patch-based combination of the
advantages of several MAR methods trained on
simulated artifacts

Input Data Feature maps Feature maps Feature maps Feature maps Output
32@64x 64 32@64x 64 32@64x 64 32@64x 64 1@64x 64
)
UL .

Convolution Convolution Convolution Convolution .
+ RelU +RelU +RelU +RelU Convolution

» followed by segmentation into tissue classes

« followed by forward projection of the CNN prior and
replacement of metal areas of the original sinogram

« followed by reconstruction

Yanbo Zhang and Hengyong Yu. Convolutional Neural Network Based Metal Artifact Reduction in X-Ray dkfz
@

Computed Tomography. TMI 37(6):1370-1381, June 2018.



(a) Reference Image (b) Original Image
= |r1£;ut feature

. "1
Pt
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{a) NMART Prior (b) NMARZ2 Prior (c) CNN Prior
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(g) CNN Image (h) CNN-MAR
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Generative Adversarial Network?
(GAN)

« Useful, if no direct ground truth (GT) is available, the
training data are unpaired, unsupervised learning

- generate % detect

Counterfeiter fake currency fake currency Police
Generator G Discriminator D

true =1, fake=0
sigmoid in-between

provide
true data

Treasury
Data pool

1]. Goodfellow et al. Generative Adversarial Nets, arXiv 2014




Noise Removal Example

Task: Reduce noise from low dose CT images.
A conditional generative adversarial networks (GAN) is used

Generator G:
— 3D CNN that operates on small cardiac CT sub volumes

— Seven 3x3x3 convolutional layers yielding a receptive field of 15x15%15
voxels for each destination voxel

— Depths (features) from 32 to 128 _ Generator CYR G
— Batch norm only in the hidden layers [ :
— Subtracting skip connection Dencieed
» Discriminator D: o Gt
— Sees either routine dose image or a
generator-denoised low dose image Oro
— Two 3x3x3 layers followed by several } Qetio)

3x3 layers with varying strides
— Feedback from D prevents smoothing.
Training:

— Unenhanced (why?) patient data acquired
with Philips Briliance iCT 256 at 120 kV.

— Two scans (why?) per patient, one with 0.2 mSv and one with 0.9 mSv effective dose.

ODenoised CT G(l,p)

O Routine-dose CT /zp

J. Wolterink, T. Leiner, M. Viergever, and |. ISgum. Generative Adversarial Networks for Noise

Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.



Noise Removal Example

Low dose image (0.2 mSv)
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Noise Removal Example
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iDose level 3 reconstruction (0.2 mSv)

J. Wolterink, T. Leiner, M. Viergever, and |. ISgum. Generative Adversarial Networks for Noise

Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.



Noise Removal Example

Denoised low dose image (0.2 mSv)

J. Wolterink, T. Leiner, M. Viergever, and |. ISgum. Generative Adversarial Networks for Noise

Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.



Noise Removal Example

Vg i

Normal dose image (0.9 mSv)

J. Wolterink, T. Leiner, M. Viergever, and |. ISgum. Generative Adversarial Networks for Noise

Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.



Canon‘s AICE

« Advanced intelligent Clear-1Q Engine (AICE)

 Trained to restore low-dose CT data to match the
properties of FIRST, the model-based IR of Canon.

 FIRST is applied to high-dose CT images to obtain a
high fidelity training target

Training AiCE — Deep Learning

Anatomical
mmmmm

nnnnnnn

nnnnnn

nnnnnn

Multiple Variations

AICE Image

Information taken from https://global.medical.canon/products/computed-tomography/aice_dIr dkuQ



U =100 kV

CTDI = 0.6 mGy
DLP =24.7 mGy-cm
Dy = 0.35 mSv

“—{ Courtesy of
— . Radboud ,
FIRST Lung (full'iterative) AICE Lung (deep Tearning thei,etﬁ(‘;”;;”dcs



 No information can be obtained in how the training is

GE’s True Fidelity

 Trained to restore low-dose CT data to match the
properties of Veo, the model-based IR of GE.

conducted for the product implementation.

%
S
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O
O
A
O
(@
|
>
)
[72]

2.5D DEEP LEARNING FOR CT IMAGE RECONSTRUCTION USING A MULTI-GPU
IMPLEMENTATION

Amirkoushyar Ziabari*, Dong Hye Ye * T, Somesh Srivastava®, Ken D. Sauer
Jean-Baptiste Thibault *, Charles A. Bouman*

* Electrical and Computer Engineering at Purdue University
T Electrical and Computer Engineering at Marquett University
 GE Healthcare
© Electrical Engineering at University of Notre Dame

ABSTRACT

While Model Based Iterative Reconstruction (MBIR) of CT
scans has been shown to have better image quality than Fil-
tered Back Projection (FBP), its use has been limited by its
high computational cost. More recently, deep convolutional
neural networks (CNN) have shown great promise in both de-
noising and reconstruction applications. In this research, we
propose a fast reconstruction algorithm, which we call Deep

streaking artifacts caused by sparse projection views in CT
More recently, Ye, et al. developed method
porating CNN denoisers into MBIR reconstruction
nced prior models using the Plug-and-Play framework

images

In this paper, we propose a fast reconstruction algorithm,
which we call Deep Learning MBIR (DL-MBIR), for approx-
imately achieving the improved quality of MBIR using a deep

residual neural network. The DL-MBIR method is trained to



Courtesy of GE Healthcare



Deep Scatter Estimation

277

In real time?




Monte Carlo Scatter Estimation

« Simulation of photon trajectories according to
physical interaction probabilities.

* Simulating a large numb~ 5 ries well
our

apIOrOX|rrm1~“:O 10 h data se".

c Zulllpl
ographt




Deep Scatter Estimation (DSE)

Train a deep convolutional neural network "'N) to
estimate scatter using a funcfie= *~
projection data A< ="

J. Maier, M. KachelrieB et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. KachelrieR et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019. dk z.



Measurement Results

Kernel-Based Hybrid Scatter Deep Scatter
Scatter Estimation Estimation Estimation

Slit Scan No Correction

CT Reconstruction

Difference to slit scan

C=0HU, W=1000HU

J. Maier, M. Kachelriel3 et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018. dkfz
o

J. Maier, M. KachelrieR et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



A simple detruncation was applied to the rawdata before reconstruction. Images were clipped to the FOM before display. C = -200 HU, W = 1000 HU.

Truncated DSEL?

40 x 40 cm?
flat detector

Ground truth Uncorrected MC-corrected DSE

40 x 40 cm?2
flat detector

To learn why MC fails at truncated data and what significant efforts are necessary to cope with that situation see [Kachelriel3 et al.
Effect of detruncation on the accuracy of MC-based scatter estimation in truncated CBCT. Med. Phys. 45(8):3574-3590, August 2018].

1J. Maier, M. Kachelriel et al. Deep scatter estimation (DSE) for truncated cone-beam CT (CBCT). RSNA 2018. dkfz
o

2J. Maier, M. Kachelriel3 et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



How Well does DSE Generalize?

DSE

Head

Thorax

Abdomen

Head

1.2

21.1

32.7

Thorax

8.8

1.5

9.1

Abdomen 11.9 10.9 1.3
All data

Values shown are the mean absolute percentage errors (MAPES) of the testing data.
Note that thorax and head suffer from truncation due to the small size of the 40x30 cm flat detector.

Real-time scatter estimation for medical CT using the deep scatter estimation:
Method and robustness analysis with respect to different anatomies, dose
ils, tube voltages and data truncation

Joscha Maier,® Elias Euhg and Tim Voth

German Cance

TOP DOWNLOADED PAPER 2018-2019

CONGRATULATIONS TO

Marc KaChelrleSS Department of Physics and Astronomy, Ruprecht-Karls-University He u!L Iberg, Im N simer Feld 226, 69120, Heidelberg,
whose paper has been recognized as Germany
one of the most read in

Michael Kna Jan Kuntz

Medical Physics 1 - . . . Non T . -
v German Cance arch Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany

Stefan Sawall and Marc Kachelrie3
( _ "

, Germany

published 26 November 2018)

Purpose: X-
as streak and cupping ar

J. Maier, M. Kachelriel3 et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. KachelrieB et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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In real time?




Deep Dose Estimation (DDE)

Combine fast and accurate CT dose estimation using
a deep convolutional neural network.

 Train the network to reproduce MC dose estimates
given the CT image and a first-order dose estimate.

2-channel input:
CT image |

256 x 256 x 48 x 16
128 x 128 x 24 x 32

(7

@— f
= -
.

target:

1st order dos€

Gy PP

l\\\\
Mﬁ

16 x 16 x 3 x 256

1M. Baer, M. KachelrieR.
Phys. Med. Biol. 57, 2012.

3 x 3 x 3 Convolution (stride = 1), ReLU ' 3 x 3 x 3 Convolution (stride = 2), ReLU 1 x1 x 1 Convolution (stride = 1), ReLU 2 x 2 x 2 Upsampling

O Depth concatenate

>

—

N
N
e
N

J. Maier, E. Eulig, S. Sawall, and M. Kachelrie3. Real-time patient-specific CT dose estimation using a deep convolutional neural dkfz
o

network, Proc. IEEE MIC 2018 and ECR Book of Abstracts 2019. Best Paper within Machine Learning at ECR 2019!



Results

Thorax, tube A, 120 kV, no bowtie

CT image First order dose
o «.— ) MC DDE
4 ' \ 48
aQ slices 1h 0.25s
whole
& g g body 20 h 55

o MC uses 16 CPU kernels
DDE uses one Nvidia Quadro P600

”

GPU
'-l’ “ | i DDE training took 74 h for 300 epochs,
Yy - S | 1440 samples, 48 slices per sample
MC ground truth DDE Relative error

J. Maier, E. Eulig, S. Sawall, and M. Kachelrie3. Real-time patient-specific CT dose estimation using a deep convolutional neural
network, Proc. IEEE MIC 2018 and ECR Book of Abstracts 2019. Best Paper within Machine Learning at ECR 2019! dk z.



Intervention goes Deep!



Deep DSA




Methods

General principle

Conventional DSA

Deep DSA

1y
« Train on static cases where ground truth is conventional DSA

E. Eulig, M. Kachelriel3, et al. "Learned digital subtraction angiography (Deep DSA): method and application to lower extremities". dkfz
o

Proc. SPIE 11072, 15th International Meeting on Fully Three-Dimensional Image Reconstruction, 1107223:1-4, May 2019.



Methods

General principle

Conventional DSA

Deep DSA

|
»:II

l..*.,ll

It N [Nt
« Train on static cases where ground truth is conventional DSA

* During inference CNN can be applied to both static and dynamic

cases
E. Eulig, M. Kachelriel3, et al. "Learned digital subtraction angiography (Deep DSA): method and application to lower extremities". dkfz
o

Proc. SPIE 11072, 15th International Meeting on Fully Three-Dimensional Image Reconstruction, 1107223:1-4, May 2019.



— Results

Original x-ray sequence

Ground truth DSA

Artificially
introduced
stenosis?

Due to a low amount of training data and a low
variability of the training data available to us the
results shown on this slide are not optimal, yet.

CNN output

E. Eulig, M. Kachelriel3, et al. "Learned digital subtraction angiography (Deep DSA): method and application to lower extremities". dkfz
o

Proc. SPIE 11072, 15th International Meeting on Fully Three-Dimensional Image Reconstruction, 1107223:1-4, May 2019.



Deep DSA

Fluoroscopy DSA (fluoro minus mask) Deep DSA (from fluoro only)

-

\

Due to a low amount of training data and a low
variability of the training data available to us the
results shown on this slide are not optimal, yet.

E. Eulig, M. Kachelriel3, et al. "Learned digital subtraction angiography (Deep DSA): method and application to lower extremities". dkfz
o

Proc. SPIE 11072, 15th International Meeting on Fully Three-Dimensional Image Reconstruction, 1107223:1-4, May 2019.



Results

Bolus chase study

Dynamic fluoroscopy

Conventional DSA
infeasible due to

C-arm motion

Conventional DSA

Deep DSA

Deep DSAatt=t¢,

Deep DSA att =¢,

E. Eulig, M. Kachelriel3, et al. "Learned digital subtraction angiography (Deep DSA): method and application to lower extremities". dkfz
®

Proc. SPIE 11072, 15th International Meeting on Fully Three-Dimensional Image Reconstruction, 1107223:1-4, May 2019.



Deep 3D+T Tomographic Fluoroscopy

either 2D+T fluoroscopy
q




How to Realize 3D+T Fluoroscopy
 Low dose by:
— Low tube current

— Very few projections (pulsed mode)

« Advantages of intervention guidance:

— Repetitive scanning of the same body region: changes are sparse.

— Interventional materials are fine structures (few voxels) of high
contrast (metal).

Prior scan

400 projections

16 projections

J. Kuntz, M. KachelrieB et al., “Real-time x-ray-based 4D image guidance”, EuRad 23:1669-1677, January 2013.

J. Kuntz, M. Kachelriel3 et al., “Constrained reconstructions for 4D intervention guidance”. PMB 58:3283-3300, April 2013.
B. Flach. M. KachelrielR et al., “Low dose tomoarap

hic fluoroscopv’”. MedPhyvs 40:101909. 11 paa

es. October 2013. dkfz.



2013: 3D+T Fluoroscopy at Low Dose

Guide Wire in the Carotis of a Pig with Angio Roadmap Overlay

This work was awarded the intervention award 2013 of the German Society of Neuroradiology (DGNR).
This work was further selected as the Editor's Pick for the Medical Physics Scitation site.

Dose of the 2013 approach: 20 bis 50 pGy/s.

This is about 4 to 8 times higher than 2D fluoroscopy.
Need to reduce number of projections from 16 to 4.
How? — Deep Learning!

J. Kuntz, M. KachelrieB et al., “Real-time x-ray-based 4D image guidance”, EuRad 23:1669-1677, January 2013. d fz
I( o

J. Kuntz, M. Kachelriel3 et al., “Constrained reconstructions for 4D intervention guidance”. PMB 58:3283-3300, April 2013.
B. Flach. M. KachelrieRR et al., “Low dose tomoaraphic fluoroscopv’”’. MedPhvs 40:101909. 11 pages. October 2013.
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Deep Tool Extraction (DTE), Feldkamp Recon (FDK), Deep Tool Reconstruction (DTR)

|
|
o | - DTR
v y y
L, " L .
Tool-only projections Sparse reconstruction Segmentation of
at current time step of interventional tools interventional tools

S

Input projections
at current time step

: : :
7

¥ & /?; / y N /?\; §
i e
Patient-only projections Patient-only Combined
accumulated over past reconstruction reconstruction,
timesteps final image

E. Eulig, J. Maier, N.R. Bennet, M. Knaup, K. Horndler, A. Wang, and M. Ka-chelriel3. Deep learning-aided CBCT image reconstructiondkfz
o

of interventional material from four x-ray projections. SPIE Medical Imaging Conference Record, 1131211 :1-7, March 2020.



Zeego Measurements

with Just 4 Projections
Ground truth (measurﬁnts from 400 prﬁections)

R - be
Details siehe Preisuiberga _
des Dietrich-Harder Masterarbeitspreises
an

Elias Eulig
Freitag 11:40, Behnken-Berger—Sitzung
we %

Stent
examples:

Loop through slices reconstructed "
from just 4 projections without Al:

E. Eulig, J. Maier, N.R. Bennet, M. Knaup, K. & f’, wf oY B\, Ka-chelrieR. Deep |
of interventional material from four x-ray projections. S



Motion Compensation

3D CBCT 4D gated CBCT sMoCo acMoCo
Standard Conventional Standard Motion Artifact Model-Based
.Phase-Correlated Compensation Motion Compensation

C =-200 HU, W =1400 HU, displayed with 30 rpm.
Patient data provided by Memorial Sloan—Kettering Cancer Center, New York, NY.
Brehm, Kachelriel3 et al., “Self-adapting cyclic registration for CBCT”, Med. Phys. 39(12):7603-7618, 2012.
Varldn Brehm KachelrleB et al., “Artifact-resistant motion estimation for CBCT” Med. Phys. 40(10) 101913 2013.
rehm. KachelrieR i
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Motion Compensation for Cardiac CT

Input: CT
image with
motion
artifacts

Input: CT image with motion artifacts

N xN
8 8 16 16 16

N/2 x N/2
16 32 32

N/4 x N/4
32 64 64 Fully
N/8 x N/8 connected
64 64 64 N/16 x N/16 neurons

Output:
motion

| direction
(to be used
by MoCo
recon)

' 3 x 3 Convolution (stride = 1), Batch norm, ReLU ’ 2 x 2 Avg. pooling t}\ﬂ' Flatten "" Dropout (50 %)

J. Maier, S. Lebedev, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, and M. KachelrieR. Coronary artery motion compensation for dkfz
o

short-scan cardiac CT using a spatial transformer network. Conference Program of the 6th International CT-Meeting, August 2020.



Results

Measurements, patient 1
Slice 1 Slice 2 Slice 3 Slice 4

e

No Correction

™
T

w2

PAMoCo
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T AR °L- 3 K‘v .
.
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C =1000 HU
W = 1000 HU

Deep PAMoCo

-

J. Maier, S. Lebedev, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, and M. KachelrieR. Coronary artery motion compensation for

short-scan cardiac CT using a spatial transformer network. Conference Program of the 6th International CT-Meeting, August 2020



Results

Measurements, patient 2
Slice 1 Slice 2 Slice 3 Slice 4

No Correction

PAMoCo

Deep PAMoCo

C =1000 HU
W = 1000 HU

J. Maier, S. Lebedev, E. Eulig, S. Sawall, E. Fournié, K. Stierstorfer, and M. Kachelrie3. Coronary artery motion compensation for dkfz
o

short-scan cardiac CT using a spatial transformer network. Conference Program of the 6th International CT-Meeting, August 2020.
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