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Motivation
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« Cardiac CT imaging is routinely used
for the diagnosis of cardiovascular
diseases, especially those related to
coronary arteries.

* Imaging of coronary arteries places
high demands on the spatial and
temporal resolution of the CT
reconstruction.

 Motion artifacts may impair the
diagnostic value of the CT
examination.
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Motivation

« For theright coronary artery (RCA) mean velocities
between 35 mm/s and 70 mm/s have been measured 12,
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- Motion compensation to reduce motion artifacts
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- Not optimal interms of x-ray dose
since several phases are required
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- Challenging /time-consuming
optimization
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Scan range < 180°

- Limited capability to improve
temporal resolution
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Image-to-image translation

- Image-to-image translation may alter

the shape of the coronary arteries



Deep Partial Angle-Based Motion
Compensation (Deep PAMoCo)

Basic idea

1. Use partial angle reconstructions
(PARS) as input to a neural network.

2. Train neural network to predict the
parameters of a motion model that
maps all PARs to the same motion

9 MVF Sstate.
parameters
-
L] Spfatia' .| 3. Use aspatial transformer? that
transtormer applies the motion model to the

‘!g PARs to enable an end-to-end
e training.

[1] M. Jaderberg et al., “Spatial transformer networks”, NIPS 2015: 2017-2025 (2015).



Deep PAMoCo

Generation of partial angle reconstructions

1. Initial short scan reconstruction of the
complete volume.

* 2. Segmentation of one of the main coronary
4 artery (CA) branches (RCA, LM, LAD, CX) by
an in-house algorithm.
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3. Extraction of 128 x 128 patches
centered at the coronary artery.

| 4. Forward projection and

' reconstruction of 25 (non-
overlapping) angular segments
on a 128 x 128 x 15 voxel grid.

Forward & -
backprojection

*Data courtesy of Dr. Stephan Achenbach



Deep PAMoCo

Motion model

« The PAR f»(7,ti) corresponding to the time point ¢;is
transformed by a global translation s(Z;):

fz';('r, ti) = fp(r+s(ti), t;)

 The temporal dependency of s(t)is modeled as a
spline with 3 control points.

— Motion is modeled by 3D 4
displacement vectors s_12, So, S12

— The center point is always set
to zero: sp =0

— Any other displacement
vector is derived by cubic
spline interpolation

— Thus, coronary artery motion
IS modeled by 6 parameters,
I.e. the 3 coordinates of 1
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Deep PAMoCo

Network architecture

Input: Partial angle reconstructions
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Training Data Generation

Generation of prior images

« Removal of coronary artery (CA) / stent from CT
reconstructions.

* Reinsertion of simulated CAs based on a triangular
mesh of different shaped CAs.

 In total 25 different patients were used. CAs were
Inserted at different locations.

Add simulated CA with
different shape and size
using atriangular mesh
that resembles real CAs

Inpainting| & LA
of CA W B




Training Data Generation

Generation of partial angle images

« 3D global motion vector fields (MVF) are generated using
a cubic spline interpolation between 3 random vectors.

 Motion is simulated by shifting the geometry vectors
during forward projection according to the MVF.

 Here, the maximum velocity was set to 70 mm/s.

Patch extraction & partial angle generation

Motion simulation: forward
projection + motion, reconstruction
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Training & Evaluation

« 100000 CT scans were simulated with random motion patterns
and different shaped coronary arteries.

 For each case a ground truth image without motion was
simulated.

« The samples were split into 80 % training data and 20 % testing
data.

« The network was trained for 100 epochs using an Adam
optimizer and the mean squared error between the prediction
and the ground truth as loss function.

« The performance of the deep PAMoCo was also tested for real
cardiac CT scans performed at a Siemens Somatom AS+.

 Motion-compensated images are compared against a
conventional PAMoCo approach! that transforms the partial
angle reconstructions such that the image entropy of the final
Images Is minimized.

[1] J. Hahn et al., “Motion compensation in the region of the coronary arteries based on partial angle reconstructions
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Results

Measurements, patient 1
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Results

Measurements, patient 2
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Results

Measurements, patient 3
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Conclusions

 The deep PAMoCo enables an end-to-end training
of coronary artery motion compensation using a
3D neural network.

* Neural network trained on simulated data also
applies to measurements.

* In any case, motion artifacts could be reduced
efficiently.

 The quality of the motion-compensated
reconstructions is similar to conventional
PAMoCo approach but can be applied in almost
real-time (~ 1 s for a complete cardiac CT scan).
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