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Introduction: Dual Source CT (DSCT)

• Utilizes two measurement systems A and B

• Increased temporal resolution (important for 
cardiac imaging)

• Dual Energy CT 
– Different attenuation (HU) of materials at different energies enable 

material decomposition and characterization to create 
different image sets like Virtual Non Contrast (VNC), Iodine Maps or 
monoenergetic images with additional diagnostic information.

low kV scan high kV scan

Iodine map overlay

Mixed energy image

VNC

Acquisition of low and high energy image …

… which can be reconstructed in different ways
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• Scatter in dual source CT: 
forward and cross-scatter

• Leads to cupping artifacts and 
dark streaks

• Reduces the contrast-to-noise 
ratio of the images

• Scatter correction is necessary 
to maintain the accuracy of CT-
measurement

Motivation: Scatter in DSCT

Ground Truth Forward Scatter Cross-Scatter Forward 
+ Cross-Scatter

C = 40 HU, W = 300 HU, with anti-scatter grid



4

State of the Art: 
Scatter Correction in DSCT

• Model-based scatter correction¹:
– assuming that cross-scatter is mostly surface scatter

– obtaining surface information using the raw data 
sinogram

– correction with previously measured look-up table 
containing scatter information for a variety of objects 
with different surface characteristics 

– low accuracy 

• Measurement-based scatter correction¹:
– additional detector elements to sensor scatter (but no 

primary) close to the detector

– online measurement of scatter during the scan

– expensive correction

• First order scatter correction:
– accurate scatter estimation

– high computational need

[1] M. Petersilka, K. Stierstorfer, H. Bruder, T. Flohr „Strategies for scatter correction in dual source 
CT“ Med Phys. 2010 Nov; 37 (11), 5971-92.

Dual Source CT images
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Deep Scatter Estimation (DSE)

• Use a deep convolutional neural network to estimate forward scatter 
using the acquired projection data as input.

• Train the network to predict Monte Carlo scatter estimates based on 
the acquired projection data.

• DSE outperforms other scatter estimation techniques.

• DSE is much faster than the Monte Carlo simulation.

Scatter profile from Monte Carlo simulation

Scatter prediction from deep scatter estimation

| DSE - MC | MAPE = 2.5 %

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). SPIE 2017 and J. of Nondest. Eval. 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Overview Methods

• Input of one projection: 

– containing primary, forward scatter and cross-scatter 

– mapping:

• Different networks with different inputs: 

– one projection (DSE, 2D)

– one projection + approximation of cross-scatter (DSE, 2D, xSSE)

– several projections of defined range (e.g. 240°) (DSE, 3D)

• Output possibilities:

– cross-scatter

– forward scatter

– total scatter (cross-scatter + forward scatter)

– scatter for one projection or several scatter profiles for different angles
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Training and Validation Data
• MC Simulation – 17 patients for training and 8 for validation

• Geometry is adapted to the Somatom Force Siemens Healthcare

• 14 z-positions per patient simulated, scatter simulation every 10°

• Validation patients with variety in external shapes and different 
clinical situations (contrast agent, arms above head)

• Training and evaluation separately at 80 kV and at 140 kV, can 
easily be transferred to other tube voltage

14 z positions
z1

z14

…

70 cm

Validation patients:
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xSSE – Cross-Scatter Approximation 

• First an initial non-scatter-corrected 
reconstruction is computed

• Than the algorithm models the 
interactions of X-rays with matter

• One simplifying assumption that cross-
scatter only occurs along the primary 
rays

• Use this approximation (xSSE) as 
second input to the neural network
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512
×16
×32

3×3 Convolution, Stride 2

3×3 Convolution, Stride 1

Unpooling + depth concat.

Skip connection

Reshape

Network Architectures 
DSE, 2D

256
×8
×64

128
×4
×128

64
×2 
×256 

32
×1 
×512 16

×1
×1024

8×1×2048

Current
projection Output: forward, cross or total scatter 

DSE, 2D

Cross-scatter
approximation

DSE, 2D, 
xSSE

Additional input:

Downsampling
Upsampling
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Network Architecture
DSE, 3D

Input: 512 × 16 × 24 × 1

3x3x3 Convolution, Stride 1

3x3x3 Convolution, Stride 2

512 × 16 × 24 × 16

256 × 8 × 12 × 32

128 × 4 × 6 × 64

64 × 2 × 3 × 128

32 × 1 × 3 × 256

16 × 1 × 3 × 512

Upsampling

3x1x3 Convolution, Stride 1

3x1x3 Convolution, Stride 2

Output: 512 × 16 × 24 × 1

1x1x1 Convolution, Stride 1

Input: 24 projections with offset of 
10°

Output: 24 scatter profiles with 
offset of 10°
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Importance of 
Scatter-to-Primary Ratio 

Loss-Function:

• The scatter-to-primary ratio correlates with the error in the reconstructed 
images.

• At detector pixels, where the primary signal is low, the scattered photons 
can lead to an high image error.

• The correction of scatter at positions with high scatter-to-primary ratio is 
particularly important.

• Use this knowledge to optimize our scatter estimation.

Error in the uncorrected image in 
relation to the scatter-to-primary ratio 

mean absolute 
percentage error

Scatter-to-primary 
weighted 



12

Ground Truth Uncorrected DSE, 2D DSE, 2D, xSSE DSE, 3D

Evaluation Cross-Scatter Correction

Reconstructed images C = 40 HU, W = 300 HU, 
Difference to GT C = 0 HU, W = 300 HU 

The accuracy of the algorithms is estimated by 
computing the mean absolute error (MAE) in the 

patient area of the image.

Difference 
to GT

MAE = 58 HU MAE = 11.7 HU MAE = 3.9 HU MAE = 3.5 HU 

Tube Voltage: 80 kV
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Comparison Method –
Measurement-based Correction

• Measurement-based correction: additional detector elements to 
sensor scatter close to the detector.

• To simulate this method the scatter data are interpolated 
between the first and last row of the detector.

• Simulated results with measurement-based correction will lead 
to slightly better results than in a real setting – since scatter is 
normally measured outside of the detector.



14

MAE = 24.9 HU

Reconstruction, C = -500 HU, W = 1500 HU 
Difference Reconstruction to  Ground Truth 

C = 0 HU, W = 300 HU

Ground Truth Uncorrected
Measurement-based 

correction

MAE = 3.0 HU

Tube voltage: 80 kV

Evaluation Total Scatter Correction

MAE = 4.0 HUMAE = 1.6 HU

DSE, 3DDSE, 2D, xSSE

Difference 
to GT

Mean ROI: -842 HU Mean ROI: -828 HU Mean ROI: -842 HU Mean ROI: -842 HU Mean ROI: -842 HU 

Improving accuracy of air CT numbers is of great 
importance for quantitative lung imaging
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Reconstruction, C = 0 HU, W = 400 HU 
Difference Reconstruction to  Ground Truth 

C = 0 HU, W = 300 HU

Ground Truth Uncorrected
Measurement-based 

correction

Evaluation Total Scatter Correction

MAE = 2.9 HUMAE = 53.2 HU

DSE, 2D, xSSE DSE, 3D

Difference 
to GT

MAE = 7.4 HU MAE = 9.0 HU

Tube voltage: 140 kV
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Overview Results
Method Input Output MAE in image 

domain [HU]

Min / Max 

error in image 

domain [HU]

interference 

time 

/ projection

Uncorrected 33.21 ± 18.34 11.2 / 88.2

DSE, 2D One projection Scatter for this 

projection
9.31 ± 7.41 1.6 / 39.4 3.6 ms

DSE, 2D, xSSE One projection + 

approximation

Scatter for this 

projection
6.92  ± 4.53 1.6 / 17.5 3.6 ms

DSE, 3D Projections in a 

range of 240°

every 10°

Scatter in a range of 

240°
7.22  ± 5.83 2.3 / 22.5 5.4 ms

Measurement 

Based

First and last row 

of scatter

Scatter for this 

projection
3.42 ± 3.31 0.7 / 12.5 -

Monte Carlo 

simulation

Volume data of 

the patient

Scatter - - 65 s

7 validation patients, with each 14 different z-positions
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Conclusion

• Our presented algorithms are able to correct most of the scatter 
artifacts in dual source CT.

• The methods do not need additional scatter sensors.

• The algorithms are much faster than high computational methods 
like the Monte Carlo simulation. 

• The ability to leverage context about different angles leads to 
improved performance for cross-scatter estimation.

• The cross-scatter approximation (xSSE) as additional input 
improves the robustness of the algorithm.

• So far the results are based on simulations.

• Outlook: 

– apply and evaluate our algorithms with measurements.

– scatter correction for photon-counting detector.
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Thank You!

Job opportunities through DKFZ’s international Fellowship programs (marc.kachelriess@dkfz.de).
Parts of the reconstruction software were provided by RayConStruct® GmbH, Nürnberg, Germany.


