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Fully Connected Neural Network

• Each layer fully connects to previous layer

• Difficult to train (many parameters in W and b)

• Spatial relations not necessarily preserved

Hidden Hidden Output Hidden Input 
e.g. 160×100×3 pixels
e.g.

e.g. 1 label
e.g. Wiener Schnitzel

Output:Input:
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Convolutional Neural Network (CNN)

• Replace dense W in                                    by a sparse 
matrix W with sparsity being of convolutional type.

• CNNs consist (mainly) of convolutional layers.

• Convolutional layers are not fully connected.

• Convolutional layers are connected by small, say 
3×3, convolution kernels whose entries need to be 
found by training.

• CNNs preserve spatial relations to some extent.

G kernels 
3×3×F

Src
512×512×F

Dst
512×512×G

Attention: No convolution in depth direction! 
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U-Net1

3 x 3 Convolution, ReLU

2 x 2 Max. Pooling
2 x 2 Upsampling
Depth Concatenate

1 x 1 Convolution, ReLU

Input:

Output:

384 × 256 × 4

12 × 8 × 480

24 × 16 × 320

48 × 32 × 160

96 × 64 × 80

192 × 128 × 40

6 × 4 × 960

Concatenative skip connection

1O. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for
biomedical image segmentation. Proc. MICCAI:234-241, 2015. 
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Generative Adversarial Network1

(GAN)
• Useful, if no direct ground truth (GT) is available, the 

training data are unpaired, unsupervised learning

Counterfeiter
Generator G

Treasury
Data pool

generate
fake currency

$

Police
Discriminator D

true = 1, fake = 0
sigmoid in-between

detect
fake currency

provide
true data

1Goodfellow et al. 2014
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Generative Adversarial Network 
(GAN)

• Typical loss function and minimax game:

• Conditional GAN1

– Conditinal GANs sample the generator input x not from a uniform 
distribution but  from a conditional distribution, e.g. noisy CT images.

– Need some measure to ensure similarity to input distribution (e.g. 
pixelwise loss added to the minimax loss function) 

• Cycle GAN2

– Two GANs (X → Y and Y → X)

– Demand cyclic consistency, i.e.
x = GX(GY(x)) and y = GY(GX(x))

1Isola et al. 2017
2Zhu et al., 2017

X Y

GY

GX

DYDX
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Outline

1. Making up data

2. Noise removal

3. Replacement of lenghty computations

4. Image reconstruction
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Part 1:

Making up Data
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Limited Angle Example

Image Prediction for Limited-Angle Tomography via Deep Learning with Convolutional Neural Network. 
Hanming Zhang, Liang Li, Kai Qiao, Linyuan Wang, Bin Yan, Lei Li, Guoen Hu. arXiv 2016.

GT FBP (150°) CNN
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MAR Example

• Deep CNN-driven patch-based combination of the 
advantages of several MAR methods trained on 
simulated artifacts

• followed by segmentation into tissue classes

• followed by forward projection of the CNN prior and 
replacement of metal areas of the original sinogram

• followed by reconstruction
Yanbo Zhang and Hengyong Yu. Convolutional Neural Network Based Metal Artifact Reduction in X-Ray

Computed Tomography. TMI 37(6):1370-1381, June 2018.
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= input feature 1

= input feature 2 = input feature 3

= output

= proposed method
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MAR without Machine Learning is a 
Good Alternative:

Frequency Split Normalized MAR1,2

Patient with bilateral hip prosthesis, Somatom Definition Flash, (C=40/W=500).

Uncorrected FSLIMAR FSNMAR

1E. Meyer, M. Kachelrieß. Normalized metal artifact reduction (NMAR) in computed tomography. Med. Phys. 37(10):5482-5493, Oct. 2010.   
2E. Meyer, M. Kachelrieß. Frequency split metal artifact reduction (FSMAR) in CT. Med. Phys. 39(4):1904-1916, April 2012.
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Junyoung Park, Donghwi Hwang, Kyeong Yun Kim, Seung Kwan Kang, Yu Kyeong Kim and Jae Sung Lee. Computed 
tomography super-resolution using deep convolutional neural network. Phys. Med. Biol. 63: 145011, 2018

Resolution Improvement Example
• 2D U-net to converts 5 mm thick images into 1 mm ones.

• E.g. to “replace a scanning protocol for a 1 mm slice with 
a 5 mm protocol”. 5 mm image 1 mm GTRL deconv. U-net
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Sparse View Restoration Example

Yo Seob Han, Jaejun Yoo and Jong Chul Ye. Deep Residual Learning for Compressed Sensing CT 
Reconstruction via Persistent Homology Analysis. ArXiv 2016.
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Very 
impressive, 

but…

Very 
impressive, 

but…

Very 
impressive, 

but…
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Sparse CT Recon with 
Data Consistency 
Layers (DCLs)

A. Kofler, M. Haltmeier, C. Kolbitsch,  M. Kachelrieß, and M. Dewey. A U-Nets Cascade for Sparse 
View Computed Tomography, MICCAI 2018

GT

32 view FBP

U-Net only (1 DCL)

2 iterations

3 iterations

4 iterations
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Part 2:

Noise Removal
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Noise Removal Example 1

• 3-layer CNN uses low dose and corresponding 
normal dose image patches for training

Normal dose Low dose ASD-POCS

KSVD BM3D 3-Layer CNN

Hu Chen, Yi Zhan, Weihua Zhang, Peixi Liao, Ke Li, Jiliu Zhou, and Ge Wang. Low-dose CT via convolutional 
neural network. Biomedical Optics Express 8(2):278381, February 2017.
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Noise Removal Example 2
• Task: Reduce noise from low dose CT images.

• A conditional generative adversarial networks (GAN) is used

• Generator G: 
– 3D CNN that operates on small cardiac CT sub volumes

– Seven 3×3×3 convolutional layers yielding a receptive field of 15×15×15 
voxels for each destination voxel

– Depths (features) from 32 to 128

– Batch norm only in the hidden layers

– Subtracting skip connection

• Discriminator D:
– Sees either routine dose image or a 

generator-denoised low dose image 

– Two 3×3×3 layers followed by several
3×3 layers with varying strides

– Feedback from D prevents smoothing.

• Training:
– Unenhanced (why?) patient data acquired 

with Philips Briliance iCT 256 at 120 kV.

– Two scans (why?) per patient, one with 0.2 mSv and one with 0.9 mSv effective dose.

J. Wolterink, T. Leiner, M. Viergever, and I. Išgum. Generative Adversarial Networks for Noise 
Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.
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• G1 and G2 include supervised learning and thus 
perform only with phantom measurements.

• G3 is unsupervised. 

• G3 is said to generate images with a more similar 
appearance to the routine-dose CT. Feedback from 
the discriminator D prevents smoothing the image.

Noise Removal Example 2

J. Wolterink, T. Leiner, M. Viergever, and I. Išgum. Generative Adversarial Networks for Noise 
Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.
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Low dose image (0.2 mSv)

Noise Removal Example 2

J. Wolterink, T. Leiner, M. Viergever, and I. Išgum. Generative Adversarial Networks for Noise 
Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.
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iDose level 3 reconstruction (0.2 mSv)

Noise Removal Example 2

J. Wolterink, T. Leiner, M. Viergever, and I. Išgum. Generative Adversarial Networks for Noise 
Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.
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Denoised low dose image (0.2 mSv)

Noise Removal Example 2

J. Wolterink, T. Leiner, M. Viergever, and I. Išgum. Generative Adversarial Networks for Noise 
Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.
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Normal dose image (0.9 mSv)

Noise Removal Example 2

J. Wolterink, T. Leiner, M. Viergever, and I. Išgum. Generative Adversarial Networks for Noise 
Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.
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Noise Removal Example 3

• Architecture based on state-of-the art 
networks for image classification (ResNet).

• 32 conv layers with skip connections

• About 2 million tunable parameters in total

• Input is arbitrarily-size stack of images, 
with a fixed number of adjacent slices in 
the channel/feature dimension.

Input:
low-dose

CT images

Output:
denoised 

CT images

Full-dose 
reference

MSE
loss function

⊝Noise
subtraction

Skip 
connection

Residual Block

Predicted
noise

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT 
Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.
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Low dose images (1/4 of full dose)

Noise Removal Example 3

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT 
Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.
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Denoised low dose

Noise Removal Example 3

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT 
Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.
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Full dose

Noise Removal Example 3

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT 
Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.
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Denoised full dose

Noise Removal Example 3

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT 
Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.
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Noise Removal Example 4

Y. Wang et al. Iterative quality enhancement via residual-artifact learning networks for low-dose CT. 
Phys. Med. Biol. 63:215004, 2018.
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Noise Removal Example 5

• ECG-based TCM yields cardiac 
phases with high noise. 

• Train a cycle GAN that learns from the low noise 
phases to remove noise in the high noise phases.

• 50 patient cases
used for training.

• Nice results!

E. Kang, J.C. Ye et al. Cycle-consistent adversarial denoising network for multiphase 
coronary CT angiography. Med. Phys. 46(2), February 2019.

A = high noise
B = low noise
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• Based on a deep CNN

• Trained to restore low-dose CT data to match the 
properties of FIRST, the model-based IR of Canon.

• FIRST is applied to high-dose CT images to obtain a 
high fidelity training target

Noise Removal Example 6
Canon‘s AiCE

Information taken from https://global.medical.canon/products/computed-tomography/aice_dlr



FBP FC52 (analytical recon) AIDR3De FC52 (image-based iterative)

AiCE Lung (deep learning)FIRST Lung (full iterative)

Courtesy of 
Radboudumc, 

the Netherlands

U = 100 kV
CTDI = 0.6 mGy
DLP = 24.7 mGy⋅cm
Deff = 0.35 mSv
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Part 3: 

Replacement of Lengthy Computations
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Empirical Shading Correction:
ScatterNet

• Net to convert CBCT log (why?) rawdata into artifact-free data.

• Net architecture:
– Small receptive field spectrum converter block adapts the attenuation values.

– Residual U-Net then follows to account for scatter.

• Pixel-wise loss function comparing the corrected CBCT projections 
with those of the reference shading correction method.

• Reference shading correction method:
– Use data from a clinical CT scan as an artifact-free prior.

– Intensity domain frequency split between planning CT and CBCT:

» Deformably register planning CT onto CBCT and forward project and 
exponentiate to obtain “ideal” intensity data

» Scale CBCT intensities to match the prior CT intensities

» Corrected intensities = LP(forward proj. CT)+HP(scaled uncorr. CBCT)

• ScatterNet replaces the previous correction method and thus 
speeds up computation and does not make use of the planning CT.

D. Hansen, K. Parodi et al. ScatterNet: A convolutional neural network for cone-beam CT intensity correction, MedPhys, Sep. 2018.
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Spectrum 
converter block

ScatterNet

D. Hansen, K. Parodi et al. ScatterNet: A convolutional neural network for cone-beam CT intensity correction, MedPhys, Sep. 2018.
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Scatter (or Shading) Correction
by Frequency Split (FS)

Object

Prior

Scan

Scatter−corrected 
Reconstruction

+

Forward

Projection

High Pass

HP

Low Pass

LP=1−HP

Reconstruction

Similar method has been proposed by Niu et al. Med.Phys 37(10), pp. 5395 ff.
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Scatter is Non-Smooth 
in Log and in Image Domain

Scatter Primary + Scatter
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Primary
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Scatter is Smooth 
only in Intensity Domain!

Intensity
Domain

Log
Domain

Image
Domain

Primary Primary + Scatter

+

+

+

=

=

=

log

recon

Scatter

recon

log

recon
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Scatter is Smooth 
only in Intensity Domain!

=+Intensity 
Domain

Primary Scatter Primary + Scatter

log

+ =

log

Log 
Domain

recon reconrecon

Image 
Domain + =

C = 0 HU, W = 600 HU C = 0 HU, W = 600 HU C = 0 HU, W = 600 HU 

C = 2, W = 5 C = 2, W = 5 C = 0.0, W = 2.0 

C = 0.05, W = 0.20 C = 0.05, W = 0.20 C = 0.01, W = 0.01 
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Scatter is Smooth 
only in Intensity Domain!

=+
Intensity 
Domain

Primary Scatter Primary + Scatter

log

+ =

log

Log 
Domain

recon reconrecon

Image 
Domain + =

C = 0 HU, W = 600 HU 

C = 2.8, W = 5.6 C = 0.0, W = 4.0 

C = 0.05, W = 0.20 C = 0.03, W = 0.02 

C = 0 HU, W = 2000 HU C = 0 HU, W = 1200 HU 

C = 2.8, W = 5.6 

C = 0.05, W = 0.20 
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Deep Scatter Estimation
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Motivation

• X-ray scatter is a major cause of image quality 
degradation in CT and CBCT.

• Appropriate scatter correction is crucial to maintain 
the diagnostic value of the CT examination.

+

CT image

scatter

Primary intensity

CT reconstruction

CT reconstruction

C = 0 HU, W = 800 HU
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Scatter Correction

-

Measured intensity Scatter estimate
Anti-scatter grid

Collimator

Scatter suppression
• Anti-scatter grids

• Collimators

• …

Scatter estimation
• Monte Carlo simulation

• Kernel-based approaches

• Boltzmann transport

• Primary modulation

• Beam blockers

• …
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Kernel-Based Scatter Estimation

Scatter distribution of an 
incident needle beam

Complete scatter 
distribution
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Kernel-Based Scatter Estimation

Estimate needle beam scatter 
kernels as a function of the 
projection data

Estimate mean scatter 
kernel that maps a function 
of the projection data      to 
scatter distribution
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• Simulation of photon trajectories according to 
physical interaction probabilities.

• Simulating a large number of photon trajectories well 
approximates the actual scatter distribution.

Monte Carlo Scatter Estimation

Scatter distribution of an 
incident needle beam

Complete scatter 
distribution
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Monte Carlo

Deep Scatter Estimation (DSE)

Train a deep convolutional neural network (CNN) to 
estimate scatter using a function of the acquired 
projection data as input.

Scatter estimate Input:

Convolutional neural network

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Deep Scatter Estimation
Network architecture & scatter estimation framework

3 x 3 Convolution, ReLU

2 x 2 Max. Pooling
2 x 2 Upsampling
Depth Concatenate

1 x 1 Convolution, ReLU

Input:

Output:
scatter estimate 384 × 256 × 4

12 × 8 × 480

24 × 16 × 320

48 × 32 × 160

96 × 64 × 80

192 × 128 × 40

6 × 4 × 960Projection data

Downsampling
and application 

of operator

Upsampling
to original 

size

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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+ +

Primary intensity Poisson noiseMC scatter simulationCBCT Setup

Input

Desired output

Training the DSE Network

• Simulation of 6000 projections using 
different heads and acquisition parameters 
(80 kV, …, 140 kV in steps of 20 kV).

• Splitting into 80% training and 20% 
validation data.

• Mean S/P = 0.9
• 90th percentile S/P = 1.32
• Training minimizes MSE pixel-wise loss on 

a GeForce GTX 1080  for 80 epochs.

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Results on Simulated Projection Data
Scatter ground 

truth (GT)
Primary 
intensity

(Kernel – GT) 
/ GT 

(Hybrid - GT) 
/ GT

(DSE – GT)    
/ GT

View #1

View #2

View #3

View #4

View #5

C = 0 %, W = 50 %C = 0 %, W = 50 %C = 0 %, W = 50 %C = 0.5, W = 1.0 C = 0.04, W = 0.04

14.1%
mean 

absolute
percentage 

error
over
all

projections

7.2%
mean 

absolute 
percentage

error
over
all

projections

1.2%
mean 

absolute
percentage 

error
over
all

projections

DSE trained to estimate scatter from primary plus scatter: High accuracy
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Reconstructions of Simulated Data

No Correction
Kernel-Based 

Scatter Estimation

Hybrid Scatter 

Estimation
Deep Scatter 

Estimation
Ground Truth
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C = 0 HU, W = 1000 HU

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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• Measurement of a head 
phantom at our in-house 
table-top CT.

• Slit scan measurement 
serves as ground truth.

X-ray source

Detector

Measurement to be corrected

Testing of the DSE Network for 
Measured Data (120 kV)

X-ray source

Detector

Ground truth: slit scan

Collimator

DKFZ table-top CT

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Reconstructions of Measured Data

No Correction
Kernel-Based 

Scatter Estimation

Hybrid Scatter 

Estimation
Deep Scatter 

Estimation
Slit Scan
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C = 0 HU, W = 1000 HU

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Simulation-based 
artifact correction

Standard 
reconstruction

J. Maier, M. Kachelrieß et al. Simulation-based artifact correction (SBAC) for 
metrological computed tomography. Meas. Sci. Technol. 28(6):065011, May 2017.

Simulation-based removal of
• beam hardening artifacts
• off-focal radiation artifacts
• focal spot blurring artifacts
• detector blurring artifacts

• scatter artifacts
• …



76

Simulation Study: Training Data

Poisson noise

MC scatter 

Tube 
Voltage:
225 kV, 
275 kV, 
320 kV 

Tilt angle:

0° 30° 60° 90°

Compressor
(Titanium

alloy)

Cylinder 
head

(Aluminum)

Casting
(Aluminum)

Cassette
(Steel)

+

+Tin 
Prefilter:
1.0 mm, 
2.0 mm

Isocenter-detector-distance
400 mm, 500 mm, 600 mm  

Scaling (size)
0.8, 1.2

• Simulation of 16416 projections using different objects and 
parameter settings to train the DSE network.

• Training on a GeForce GTX 1080 for 80 epochs using the Keras
framework, an Adam optimizer and a mini-batch size of 16.

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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• Simulation of a tomography (720 projection / 360°) of five 
components using acquisition parameters that differ from the 
ones used to generate the training data set.

Simulation Study: Testing Data

Poisson noise

MC scatter 

Tube 
Voltage:
250 kV

Tilt angle:

15°

Compressor
(Titanium

alloy)

Cylinder 
head

(Aluminum)

Casting
(Aluminum)

Cassette
(Steel)

+

+Tin 
Prefilter:
1.5 mm

Isocenter-detector-distance
550 mm

Scaling (size)
1.0

Profile
(Aluminum)

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Test Performance
for Different Inputs

DSE

DSE

DSE

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Results
Scatter estimates for simulated testing data

Scatter ground 
truth (GT)

Primary 
intensity

|Kernel - GT| 
/ GT 

|Hybrid - GT| 
/ GT

|DSE - GT| 
/ GT

C = 0 %, W = 50 %C = 0.5, W = 1.0 C = 0.015, W = 0.020 C = 0 %, W = 50 %C = 0 %, W = 50 %

Model

13%
mean 

absolute
percentage 

error
over
3600

projections

7%
mean 

absolute
percentage 

error
over
3600

projections

1%
mean 

absolute
percentage 

error
over
3600

projections
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Scatter free  (GT) Kernel-based - GT Hybrid - GT DSE - GTNo correction No correction - GT

C/W = 0.00 / 0.03 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.08 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.03 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.08 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.03 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.08 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.03 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.00 / 0.08 mm-1

C/W = 0.00 / 0.015 mm-1

C/W = 0.07 / 0.03 mm-1

C/W = 0.035 / 0.015 mm-1

C/W = 0.035 / 0.015 mm-1

C/W = 0.135 / 0.08 mm-1

C/W = 0.035 / 0.015 mm-1

C/W = 0.07 / 0.03 mm-1

C/W = 0.035 / 0.015 mm-1

C/W = 0.035 / 0.015 mm-1

C/W = 0.135 / 0.08 mm-1

C/W = 0.035 / 0.015 mm-1

Results
CT reconstructions of scatter corrected testing data
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Application to Measured Data

Training Testing

Components

Detector elements 768×768 768×768

Source-detector distance 580 mm 580 mm

Source-isocenter distance 100 mm, 110 mm, 120 mm 110 mm

Tilt angle 0°, 30°, 60°, 90° 0°

Tube voltage 100 kV, 110 kV, 120 kV 110 kV

Copper prefilter 1.0 mm, 2.0 mm 2.0 mm

Scaling 1.0 -

Number of projections 8208 720

• Measurement at DKFZ table-top CT
• Tomography of aluminum profile   

(720 projections / 360°)
• 110 kV Hamamatsu micro-focus x-

ray tube
• Varian flat detector 
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Results
Performance of DSE for measured data

CT reconstructions

MC scatter |Kernel-based - MC| / MC |Hybrid - MC| / MC |DSE - GT| / MC

C = 0 %, W = 50 %C = 0 %, W = 50 %C = 0.04, W = 0.06 C = 0 %, W = 50 %

Component

Projection data

Monte Carlo  (GT) Kernel-based Hybrid DSENo correction
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12.6% MAPE
(720 projections)

5.4% MAPE
(720 projections)

2.5% MAPE
(720 projections)
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Truncated DSE

FOM

FOM

Ground  truth Uncorrected MC-corrected DSE

40 × 40 cm2 

flat detector

40 × 40 cm2 

flat detector

To learn why MC fails at truncated data and what significant efforts are necessary to cope with that situation see [Kachelrieß et al. 
Effect of detruncation on the accuracy of MC-based scatter estimation in truncated CBCT. Med. Phys. 45(8):3574-3590, August 2018].

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE) for truncated cone-beam CT (CBCT). RSNA 2018.

A simple detruncation was applied to the rawdata before reconstruction. Images were clipped to the FOM before display. C = -200 HU, W = 1000 HU.
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Does DSE Generalize
to Different Anatomical Regions? 

• Simulation parameters:
– 7 head and 14 thorax/abdomen clinical CT data sets

– Apply affine transforms to obtain 28 volumes for each region

– Regions: head, thorax and abdomen

– Tube Voltage: 120 kV, 140 kV.

– Prior volumes: 28 head phantoms

– Simulate 45 projections over 360° for each volume and voltage

– Number of z-Positions: 1 for head, 4 for thorax and abdomen

– Data augmentation for head: vertical & horizontal flipping

– Total number of projections: 2 × 28 × 45 × 2 × 2 = 10080

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Neural Network & Training

384 × 256 192 × 128 96 × 64 48 × 32 24 × 16 12 × 8 6× 4 12 × 8 48 × 32 96 × 64 192 × 128 384 × 25624 × 16

Image dimensions:

Channels of the convolutional layer:

16 32 64 128 256 512 1024 512 128 64 32 16 / 1256

3 × 3 Convolution (stride = 1), ReLU 3 × 3 Convolution (stride = 2), ReLU 2 × 2 Upsampling1 × 1 Convolution (stride = 1), ReLU

Depth concatenate

• DSE was implemented using the U-net architecture shown 
below

• The training was performed on an NVIDIA Quadro P6000 for 80 
epochs using an Adam optimizer and a batch size of 16.

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Results

Values shown are the mean absolute percentage errors (MAPEs) of the testing data.
Note that thorax and head suffer from truncation due to the small size of the 40×30 cm flat detector.

DSE Head Thorax Abdomen

Head 1.2 21.1 32.7

Thorax 8.8 1.5 9.1

Abdomen 11.9 10.9 1.3

All data 1.8 1.4 1.4

KSE Head Thorax Abdomen

Head 14.5 26.8 32.5

Thorax 16.2 18.5 19.4

Abdomen 16.8 22.1 17.8

All data 14.9 20.5 19.3

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE). Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelrieß et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.
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Results

Values shown are the mean absolute percentage errors (MAPEs) of the testing data.
Note that thorax and head suffer from truncation due to the small size of the 40×30 cm flat detector.



Pep image
Scatter 

ground truth (GT)
(KSE - GT) / GT (HSE - GT) / GT (DSE - GT) / GT

C = 0.2, W = 0.35 C = 0.015, W = 0.02 C = 0 %, W = 50 % C = 0 %, W = 50 % C = 0 %, W = 50 %
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Thorax, 140 kV,
22 cm FOM

Thorax, 140 kV, 
40 cm FOM

(shifted detector)

Abdomen, 140 kV,
22 cm FOM

Abdomen, 140 kV, 
40 cm FOM

(shifted detector)

C = 0 HU
W = 700 HU

Ground truth No correction KSE HSE DSE

Head, 140 kV,
22 cm FOM



Thorax, 140 kV,
22 cm FOM

Thorax, 140 kV, 
40 cm FOM

(shifted detector)

Abdomen, 140 kV,
22 cm FOM

Abdomen, 140 kV, 
40 cm FOM

(shifted detector)

C = 0 HU
W = 700 HU

Ground truth No correction KSE HSE DSE

Head, 140 kV,
22 cm FOM
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Conclusions on DSE

• DSE needs about 20 ms per projection. It is a fast and 
accurate alternative to Monte Carlo (MC) simulations.

• DSE outperforms kernel-based approaches in terms 
of accuracy and speed.

• Interesting observations
– DSE can estimate scatter from a single (!) x-ray image. 

– DSE can accurately estimate scatter from a primary+scatter image.

– DSE cannot accurately estimate scatter from a primary only image.

– DSE may thus outperform MC even though DSE is trained with MC.

• DSE is not restricted to reproducing MC scatter 
estimates. 

• DSE can rather be trained with any other scatter 
estimate, including those based on measurements.
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Estimation of Dose Distributions

• Useful to study dose reduction techniques
– Tube current modulation

– Prefiltration and shaped filtration

– Tube voltage settings

– …

• Useful to estimate patient dose
– Risk assessment requires segmentation of the organs (difficult)

– Often semiantropomorphic patient models take over

– The infamous k-factors that convert DLP into Deff are derived this 
way, e.g. kchest = 0.014 mSv/mGy/cm

– …

• Could be useful for patient-specific CT scan protocol 
optimization

• However: Dose estimation does not work in real time!

J. Maier, E. Eulig, S. Dorn, S. Sawall, and M. Kachelrieß. Real-time patient-specific CT dose 
estimation using a deep convolutional neural network. Proc. IEEE MIC 2018.
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Deep Dose Estimation (DDE)
• Train a UNet to predict patient dose given a CT image and a photo 

effect dose image

• Training data
– 15 CT patient data sets segmented into air, fat, soft tissue, and bone

– Simulate projection data by forward projection (120 kV, 720 projections, circle 
scans at 20 different z-positions to equally cover pelvis, abdomen, thorax and 
head).

– Simulate scans without bowtie, with botwie, with bowtie and TCM 

– In total 15×20×3 = 900 data sets are reconstructed

– Use Monte Carlo software RayConStruct-MC to calculate the patient dose 
distribution, thereby accounting for Rayleigh, Compton and photo effect.

– Calculate photo effect dose distribution by direct backprojection and energy 
deposition in each voxel

• Training
– U-Net sees the CT volumes and the corresponding

first order (photoeffect) dose volumes and is
trained to predict the patient dose distribution.

– Since bone is underrepresented in all of the data 
sets, bone voxels received a twenty-fold weight in 
our MSE-based pixel-wise loss function

J. Maier, E. Eulig, S. Dorn, S. Sawall, and M. Kachelrieß. Real-time patient-specific CT dose 
estimation using a deep convolutional neural network. Proc. IEEE MIC 2018.
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U-Net
256 x 256 x 48 x 16

128 x 128x 24 x 16

64 x 64 x 12 x 64

32 x 32 x 6 x 128

16 x 16 x 3 x 256

256 x 256 x 48 x 2

CT image

First-order 

dose estimate

MC dose estimate

3 x 3 x 3 Convolution, ReLU

1 x 1 x 1 Convolution, ReLU

3 x 3 x 3 Convolution, 

stride = 2, ReLU

2 x 2 x 2 Upsampling

Depth concatenate

J. Maier, E. Eulig, S. Dorn, S. Sawall, and M. Kachelrieß. Real-time patient-specific CT dose 
estimation using a deep convolutional neural network. Proc. IEEE MIC 2018.
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Deep Dose Estimation (DDE)

C = 0 %, W = 30 %

DDE prediction Relative ErrorMC ground truth

Photo effect doseCT image

J. Maier, E. Eulig, S. Dorn, S. Sawall, and M. Kachelrieß. Real-time patient-specific CT dose 
estimation using a deep convolutional neural network. Proc. IEEE MIC 2018.

MC DDE

48
slices 1 h 0.25 s

whole 
body 20 h 5 s

MC uses 16 CPU kernels
DDE uses one Nvidia Quadro P600 GPU

DDE training took 30 h for 200 epochs, 
720 samples, 48 slices per sample
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Conclusions on DDE

• As shown, DDE works well with 360° circle scans.

• What is not shown in this presentation is that DDE 
can be trained to provide accurate dose predictions 

– for sequence scans

– for partial scans (less than 360°)

– for spiral scans

– for different tube voltages 

– for scans with and without bowtie filtration

– for scans with tube current modulation

• In practice it may therefore be not necessary to 
perform separate training runs for these cases.

• Thus, accurate real-time patient dose estimation may 
become feasible with DDE.

J. Maier, E. Eulig, S. Dorn, S. Sawall, and M. Kachelrieß. Real-time patient-specific CT dose 
estimation using a deep convolutional neural network. Proc. IEEE MIC 2018.
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Part 4:

Image Reconstruction
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Often “Just” Image Restoration

• Speeding up iterative reconstruction by training a 
CNN to convert an FBP image into an iterative image

– Canon‘s AiCE algorithm

– GE‘s True Fidelity algorithm

– plus a few more algorithms proposed in the literature

• Noise reduction by training, e.g. a mapping from low 
dose to high dose images

– many examples in the literature, some in this presentation

• Artifact reduction in image domain
– many examples in the literature, one shown in this presentation

• …
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Sometimes “Real” Image 
Reconstruction

• Networks employing data consistency layers

• Networks including backprojection layers

• Learning of backprojectors

• End-to-end training from sinogram to image

• Unrolled iterative reconstruction with learned priors

• …
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Sparse CT Recon with 
Data Consistency 
Layers (DCLs)

A. Kofler, M. Haltmeier, C. Kolbitsch,  M. Kachelrieß, and M. Dewey. A U-Nets Cascade for Sparse 
View Computed Tomography, MICCAI 2018

GT

32 view FBP

U-Net only (1 DCL)

2 iterations

3 iterations

4 iterations
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Variational Network-Based
Image Reconstruction

E. Kobler, R. Otazo et al. Variational network learning for low-dose CT. Proc. 5th CT-Meeting:430-434, 2018.

Highly simplified 
example. Varnets 
work for a much 

wider class of cost 
functions whose NN-
based minimization is 

motivated by the 
primal dual approach. 



full dose 1/4 dose 1/6 dose

tube current reduction
varnet

sparse views
varnet

sparse views
varnet

sparse views
TV

tube current reduction
SAFIRE



Conclusions on Deep CT

• Machine learning will play a significant role
in CT optimization.

• High potential for
– Artifact correction

– Noise and dose reduction

– Real-time dose assessment (also for RT)

– … 

• Care has to be taken
– Underdetermined acquisition, e.g. sparse view or

limited angle CT, require the net to make up information!

– Nice looking images do not necessarily represent the ground truth.

– Data consistency layers may ensure that the information that is 
made up is consistent with the measured data.

– …
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Which DSA is Real and Which is Fake?



Thank You!

This presentation will soon be available at www.dkfz.de/ct.
Job opportunities through DKFZ’s international Fellowship programs (marc.kachelriess@dkfz.de).
Parts of the reconstruction software were provided by RayConStruct® GmbH, Nürnberg, Germany.


