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In-plane resolution: 0.4 ... 0.7 mm
Nominal slice thickness: $=0.5... 1.5 mm
Tube (max. values): 120 kW, 150 kV, 1300 mA
Effective tube current: mAs_; = 10 mAs ... 1000 mAs
Rotation time: 7., =0.25...0.5s
Simultaneously acquired slices: M= 16 ... 320
Table increment per rotation: d=1 ... 183 mm
Scan speed: up to 73 cm/s
Temporal resolution: 50 ... 250 ms




Very Fast Scanning (Somatom Force)

Procedure:
Transcatheter aortic
valve implantation (TAVI)

Patient age: 80 years

Tube voltage: 80 kV
Current: 340 ref mAs/rot

Rotation time: 0.25 s
Pitch: 3.2
Slice thickness: 0.75 mm
Scan length: 557 mm
Scan time: 0.76 s
Scan speed: 737 mm/s

Kernel : B40
Recon: ADMIRE 3

CTDlvol: 2.7 mGy
DLP: 162 mGy-cm
Effective dose: 2.3 mSv

Case information Axial slices, C=0HU, W=1500 HU
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Data courtesy of Schleifring GmbH, Furstenfeldbruck, Germany
and of rsna2011.rsna.org/exbData/1678/docs/Gantry_Subsystem.pdf
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Courtesy of Philips Medical Systems GmbH, Hamburg, Germany



Detector Technology

Gd,0,S
7.44 g/cm3

.

Photo courtey 6f Siemehs
Healthcare, Forchheim, Germany




|

back-illuminated
photodiode

ceramics substrate

“Stellar detector”, modular and 2D tilable, focussed 2D anti scatter grid
(Photo courtesy by Siemens)




Somatom Force:
Ultra Low Dose Lung Imaging
« Atypical pneumonia in inspiration and expiration

 Turbo Flash mode, 737 mm/s, 100 kV Sn
« DLP =7 mGy-cm = 0.1 mSv per scan

100 B7 [/ 96
100 68 / 96

Courtesy of University Hospital Mannheim
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Child, 12 months

Temporal resolution: 75 ms
Collimation: 2:64%0.6 mm
Spatial resolution: 0.6 mm
Scantime: 0.23 s

Scan length: 78 mm
Rotation time: 0.28 s

80 kV, 36 mAs / rotation

Flash Spiral

Eff. dose: 0.05 mSv

No sedati®n




Photon Counting
IS the
New Detector Era!




Indirect Conversion (Tday) Direct Conversion (Future)

Gd,0,S

7.44 g/cm?

i.e. max O(40-10%) cps i.e. max O(40-10°) cps

Requirements for CT: up to 10° x-ray photon counts per second per mm?2. dkf
Hence, photon counting only achievable for direct converters. z.




Diagnostic CT (Conventional Detector) Photon Counting Detector CT
of a Low Contrast Phantom of a Low Contrast Phantom

Photon
Counting Detector

DECT C =0 HU, W=80 HU dikfz.




Dark Image of Photon Counter
Shows Background Radiation

18 frames, 5 min integration time per frame

Energy Integratlng (Dexela)
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C/W =0 a.u./70 a.u. C/W =1 cnts/2 cnts

No dark current.
No readout noise.
Single events visible!

Accumulated
Signal

C/W =30 é.u./450 a.u. C/W = 3 cnts/8 cnts

D E CT H I S Santis: 1 mm CdTe, 150 um pixel size, 4 thresholds. dk‘fz.




No Electronic Noise!

* Photon counting detectors have no electronic noise.

« Extreme low dose situations will benefit
— Pediadric scans at even lower dose
— Obese patients with less noise




Energy Integrating
(Detected Spectra at 100 kV and 140 kV)

V.

0 keV 33 keV 100 keV 140 keV

iod_ine
k-edge

Signaly = /dEE N(E)

Spectra as seen after having passed a 32 cm water layer. dk‘on




Photon Counting
(Detected Spectra at 100 kV and 140 kV)

y

0 keV 33 keV 100 keV 140 keV

iod_ine
k-edge

Spectra as seen after having passed a 32 cm water layer. dk‘on




Expected Value and Variance

Transmitted number of photons N:
N(E) = No(E)e PY(E)

Poisson distribution: EN(E) = VarN(F)

Detected signal S with sensitivity s(E):

S = f dE s(E)N(E)

Expected value and variance of the signal S:
ES = / dE s(E)EN(E) and VarS — / dE s2(E)EN(E)

Detector sensitivity: PC s(E) = 1, but El s(E) x E'!

PC = photon counting detector, El = energy integrating detector dk‘fz.




Swank Factor

 The Swank factor measures the relative SNR?, and thus the relative

dose efficiency between photon counting (PC) and energy
integrating (El).

« PC always has the highest SNR.
SF

PC

El 90 kV + 0.6 mm Sn
El 90 kV
El 150 kV + 0.6 mm Sn

=== El 150 kV

water
100 mm 300 mm 500 mm _ thickness

~ SNR%, ([dE EN(E))’

SE

- SNRis ([dEN(E)) ([dEE2N(E)) =

due to Schwarz’ inequality




Photon Counting used to Maximize CNR

« With PC energy bins can be weighted individually.

« To optimize the CNR the optimal bin weighting factor
Is given by (weighting after log):

Ch
« The resulting CNR is

Cp)?
CNR2 _ (Zb Wp
p ’wng

« At the optimum this evaluates to

B
CNR® = ) CNR;j
b=1




Energy Integrating vs. Photon Counting
with 1 bin from 20 to 140 keV

Energy Integrating o _ _ Photon Counting

'JS’-?".""&’ it 1

CNR = 2.11 D CNR = 2.95

40% CNR improvement or
49% dose reduction achievable
due to improved Swank factor
~and more weight on low energies ™
140  (iodine contrast benefits). 20

# photons
# photons

Energy / keV Energy / keV

Images: C = 0 HU, W = 700 HU, difference image: C =0 HU, W= 350 HU, bins startat 20 keV  cll¢fz,




Energy Integrating vs. Photon Counting
with 4 bins from 20 to 140 keV

Energy Integrating e Photon Counting

'Jﬂ":‘i’ it 1

*”-Mmﬂ_umw_w..w—”

ENR 2344 iR NS T

99% CNR improvement or
75% dose reduction achievable
due to improved Swank factor

and optimized energy weighting.
140

# photons
# photons

20 70

Energy / keV Energy / keV

Images: C = 0 HU, W = 700 HU, difference image: C =0 HU, W= 350 HU, bins startat 20 keV  cll¢fz,




Spatial Resolution

- Small electrodes are
necessary to avoid pile-up.

High bias voltages (around
300 V) limit charge
diffusion and thus blurring
in the non-structured
semiconductor layer.

* Thus, higher spatial
resolution is achievable.

CdTe
5.85 g/cm3




To Bin or not to Bin?

(the continuous view)

We have PSF(x) = s(x) xa(x) and MTF(u) = S(u)A(u).
From Rayleigh‘s theorem we find noise is

MTF2
NQ—/da?a (x) = /duA2 /du

Compare - yc \B) detector pixels:
A:
B.

We have Sa(u) > Sg(u) and thus Ni < Nj.

This means that a desired PSF/MTF is often best
achieved with smaller detectors.

KachelrieB, Kalender. Med. Phys. 32(5):1321-1334, May 2005 dikfz.




To Bin or not to Bin?
ot et (the discrete view)
Be e(folr ibe the 2-binned version of detector A:
Assu:iz |_|2( on + A2nt1) VarB = ;VarA |
to be used to find in-between pixel values

Wio '
g we may then cons_lder B to be unsamnlad with

mid-pOint infarnal~if- - _ rod b
20% more noise may be compensated by | _
Any alternative? Yes: ector A:

36, )

s 44% more noise or dose. |
not to bin“. d detector

~

B = ( 20% more x-ray dose.

To obtai
we heed In 2D binning implie _
. CEIE the answer IS »
a— 5 (1, 1) % 1 N
S ) x5 (1,2, 1) =4 (1, 3, 3, 1)

Noise propagation yi

_ iel :

the binned detector‘: ds ?O% more noise (variance) for
Vard = é—gVarA = 15—6VarA

VarB = 2 VarA= SVard = 1.2 VarA

KachelrieB
, Kalender. Med. Phys. 32(5):1321-1334, May 2005 dk‘f
y &5




To Bin or not to Bin

Macro Mode Sharp Mode

O

Images taken at Somatom CounT at the DKFZ by Sawall, KachelrieB et al. C = - 50 HU, W = 1900 HU dk‘fz.




CounT Std
PCD-SR

(0.5x0.5x0.5 mm?3)

0.5 1 1.5
spatial frequency (mm'1)

Animal

CounT HighRes
PCD-HRg5

(0.5%0.5x0.5 mm?3)

CounT Std CounT HighRes

0.5 1 1.5
spatial frequency {mm'1)

“However, when comparing with standard resolution data at
same in-plane resolution and slice thickness, the PCD 0.25
mm detector mode showed 19% less image noise in
phantom, animal, and human scans.”

Pourmorteza et al. Dose Efficiency of Quarter-Millimeter Photon-Counting Computed Leng et al. 150 um Spatial Resolution Using Photon-Counting Detect
Tomography: First-in-Human Results. Invest. Radiol. 53(6), 2018. Computed Tomography Technology. Invest. Radiol. 53(11), 2018

‘dkfz.




SIEMENS

SOMATOM CounT




Readout Modes of the Siemens CounT

Macro Mode Chess Mode Sharp Mode UHR Mode
1x2 readouts 2x2 readouts 5x1 readouts 4x2 readouts
16 mm z-coverage 16 mm z-coverage 12 mm z-coverage 8 mm z-coverage

12 12 12 12 12 . 12 . 1 1 1 1 12 12 12 12

12 12 12 12

e o E-H EEDE EEEE

cwe v HeH- EEES

2 2 2 2
2 2 2 2
p p 2 2
p p 2 2

No FFS on thread B (photon counting detector).
4x4 subpixels of 225 um size = 0.9 mm pixels (0.5 mm at isocenter).
The whole detector consists of 128x1920 subpixels = 32x480 macro pixels.




Ultra-High Resolution on Demand

Energy Integrating CT Photon Counting CT
(Somatom Flash) Somatom CounT. UHR-Mode)

CLINIC

Y

Courtesy of Cynthia McCollough, Mayo Clinic, Rochester, USA.




MECT

Ca-Gd-lI Decomposition
Chess pattern mode

140 kV, 20/35/50/65 keV
C=0HU, W=1200 HU

Calcium image

Courtesy of Siemens Healthcare

lodine image

-t




DECT Examples

(Slide Courtesy of Siemens Healthcare)

Single DECT T R T
scan o s L
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DE bone removal

Virtual non-contrast
and iodine image

Dual Energy whole body CTA: 100/140 Sn kV @ 0.6 mm

Courtesy of Friedrich-Alexander University Erlangen-Niirnberg




DECT Examples

(Slide Courtesy of Siemens Healthcare)

“Spectroscopy‘“: more specific tissue characterization
- Detection and visualization of calcium, iron, uric acid, .....

4 1 i

Courtesy of Klinikum GroBhadern, LMU Miinchen




First Peer Reviewed Publication on
CounT from NIH February 2016

T ——

El (Definition Flash)

PC lodine Map

Courtesy of National Institutes of Health, Berthesda, USA

Pourmorteza A et al., Abdominal Imaging with Contrast-enhanced Photon-counting CT: First Human Experience. Radiology. 2016 Apr;279(1):239-45




Potential Advantages
of Photon Counting Detectors in CT

« Higher spatial resolution due to
— smaller pixels
— lower cross-talk between pixels

 Lower dose/noise due to
— energy bin weighting

— no electronic noise
— Swank factor = 1
— smaller pixels

« Spectral information on demand
— single energy
— dual energy
— multiple energy
— virtual monochromatic
— K-edge imaging




Motion Modelling
IS the hew
Reconstruction Era!




CT is much

faster than

onhe motion
cycle!

CBCT is much
slower than
onhe motion

cycle!

Siemens Somatom Force DSCT

Varian True Beam CBCT




Motion Iin Cardiac CT

In cardiac CT, the imaging of small and fast
moving vessels places high demands on
the spatial and temporal resolution of the
reconstruction.

. t
Mean displacements of d = el

50— = 6.25 mm are possible (RCA
mean velocny measurementsl’.234]),

250

Standard FDK-based cardiac reconstruction
might have an insufficient temporal
resolution introducing strong motion
artifacts.

[1] Husmann et al. Coronary Artery Motion and Cardiac Phases: Dependency on Heart Rate -
Implications for CT Image Reconstruction. Radiology, Vol. 245, Nov 2007.

[2] Shechter et al. Displacement and Velocity of the Coronary Arteries: Cardiac and
Respiratory Motion. IEEE Trans Med Imaging, 25(3): 369-375, Mar 2006

[3] Vembar et al. A dynamic approach to identifying desired physiological phases for
cardiac imaging using multislice spiral CT. Med. Phys. 30, Jul 2003.

[4] Achenbach et al. In-plane coronary arterial motion velocity: measurement with electron-
beam CT. Radiology, Vol. 216, Aug 2000.




PAMoCo

Generate 2K+1 Partial Angle Reconstructions

Initial segmented stack volume

Subdivide the projection data p’(?, &)
into 2K + 1 overlapping sectors

p'(9,)

SI E M E N J. Hahn, M. KachelrieB et al. Motion compensation in the region of the coronary arteries based on
partial angle reconstructions from short scan CT data. Med. Phys. 44(11):5795-5813, September 2017. z.




PAMoCo

Generate 2K+1 Partial Angle Reconstructions

Initial segmented stack volume

Subdivide the projection data p’(?, &)
into 2K + 1 overlapping sectors

p'(0,€)
k=0

——s

o

m— T
2AY

wk(ﬁ) — A((ﬁ = 79:‘;’)/2‘&?9)

SIEMEN

Partial angle reconstructions f;, ('r)

f-k(r)

1. o~ trot/Q
‘res ™ 2K +1)/2

FWHM = A K=12

~ 10ms

J. Hahn, M. KachelrieB et al. Motion compensation in the region of the coronary arteries based on
partial angle reconstructions from short scan CT data. Med. Phys. 44(11):5795-5813, September 2017. z.




Slice 31

Patient 1

" sagittd) view ) [} PAMoCo

i —

Sl E M E N S HR = 74 bpm, ¢ = 30%, PAMoCo with NxN, x3 = 3x3x3 = 27 dk ‘f
C =400 HU, W = 1500 HU parameter each stack z.




Patient 1

PAMoCo

curved MPRs of the RCA

Sl E M E N S HR = 74 bpm, ¢ = 30%, PAMoCo with NxN, x3 = 3x3x3 = 27 dk ‘f
C =400 HU, W = 1500 HU parameter each stack z.




Patient 2

Slice 27 Slice 34 Slice 154
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SIEMENS '~ 400 HUL W'~ 7500 Hl




Patient 2

FBP PAMoCo

EDG_COE_64_70 BRI 51 Snapshot Coro CIMOPBizet EDG_COEu64:70:6RI WELSEEE et CIMOP Bizet

4 RCA e Ref: brudhefim 4 - *-_’+,.'-,-"1._11:‘ Ref.: brudhefm
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. 11011.2016 14:59:33 stack borders
1 IMA O \ 1 IMA D

Zoom: 36,96% Zoom: 36,46%
C 281 f W1467 C 335 (W 1416
97 1x971 O71x971
Notfordinical usel MNotfar clinical usel
0bpm, 0%, 142ms 24fps 0bpm, 0%, 142mz 45fps

curved MPRs created with syngo.via

SIEMENS R = 70 bpm, ¢ = 50%,

C =400 HU, W = 1500 HU




Patient 3

Slice 50 Slice 61
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Motion in CBCT

Linear Accelerator

kV Source Detector

varian




4D CBCT Scan
with Retrospective Gating

Amplitude End-inhale Without gating (3D): With gating (4D):
1005 A Motion artifacts Sparse-view artifacts

50% 0% 50% 0% 50% 0% 50% 0% 50% 0% Time

Projection angle
Acquisition angle/

Angular spacing of
projection bins

Measured projections
assigned to one phase bin

varian dkfz.




A Standard Motion Estimation and
Compensation Approach (sMoCo)

» Motion estimation via 4D gated CBCT ~ sMoCo

standard 3D-3D registration

- Has to be repeated for each
reconstructed phase

« Streak artifacts from gated reconstructions propagate
into sMoCo results

Li, Koong, and Xing, “Enhanced 4D cone-beam CT with inter—-phase motion model,” dkf
varian Med. Phys. 51(9), 36883695 (2007). e




The Cyclic Motion Estimation and
Compensation Approach (cMoCo)

* Motion estimation only between adjacent phases

 Incorporate additional knowledge
— A priori knowledge of quasi periodic breathing pattern
— Non-cyclic motion is penalized
— Error propagation due to concatenation is reduced

Displacement curve
of a fictitious pixel
over complete
respiratory cycle

=== W/0 temporal constraints
- Wwith temporal constraints

Brehm, Paysan, Oelhafen, Kunz, and KachelrieB, “Self-adapting cyclic registration for motion- dkf
compensated cone-beam CT in image-guided radiation therapy,” Med. Phys. 39(12):7603-7618, 2012. z.



Artifact Model-Based MoCo (aMoCo)

VCIf'ICI n Brehm, Paysan, Oelhafen, and KachelrieB, “Artifact-resistant motion estimation with a patient-specific
artifact model for motion-compensated cone-beam CT” Med. Phys. 40(10):101913, 2013.




Patient Data — Results

3D CBCT 4D gated CBCT sMoCo acMoCo
Standard Conventional Standard Motion Artifact Model-Based
Phase-Correlated Compensation Motion Compensation

Vd rlq n C=-200 HU, W =1400 HU, displayed with 30 rpm.
Patient data provided by Memorial Sloan—Kettering Cancer Center, New York, NY.




Data displayed as:

Heart: 280 bpm

Lung: 150 rpm

Mouse with 150 rpm and 280 bpm.

varian




Data displayed as:

Heart: 180 bpm

Lung: 90 rpm

Mouse with 180 rpm and 240 bpm.

varian




Data displayed as:

Heart: 90 bpm

Lung: 90 rpm

Mouse with 180 rpm and 240 bpm.

varian




Data displayed as:

Heart: 0 bpm
Lung: 90 rpm

Mouse with 180 rpm and 240 bpm.

varian




Data displayed as:

Heart: 90 bpm

Lung: 0 rpm

Mouse with 180 rpm and 240 bpm.

varian




5D Motion Compensation

9 10 11 12 13 14 15 16 17 18

—
respiratory

Brehm, Sawall, Maier, and KachelrieB, “Cardio-respiratory motion-compensated micro-CT image
reconstruction using an artifact model-based motion estimation” Med. Phys. 42(4):1948-1958, 2015. z.



5D Motion Compensation

o> > > > > > > > >

9 10 11 12 13 14 15 16 17 18

—
respiratory

Brehm, Sawall, Maier, and KachelrieB, “Cardio-respiratory motion-compensated micro-CT image
reconstruction using an artifact model-based motion estimation” Med. Phys. 42(4):1948-1958, 2015. z.



5D Motion Compensation

9 10 11 12 13 14 15 16 17 18

—
respiratory

Brehm, Sawall, Maier, and KachelrieB, “Cardio-respiratory motion-compensated micro-CT image
reconstruction using an artifact model-based motion estimation” Med. Phys. 42(4):1948-1958, 2015. z.



5D Motion Compensation

9 10 11 12 13 14 15 16 17 18
>

respiratory

Brehm, Sawall, Maier, and KachelrieB, “Cardio-respiratory motion-compensated micro-CT image
reconstruction using an artifact model-based motion estimation” Med. Phys. 42(4):1948-1958, 2015.




Motion Compensation ...

 will significantly improve cardiac CT
- may lead to hew CBCT applications,
in particular in
— interventional imaging
— imaging for radiation therapy

« MoCo also works for 4D and 5D PET, MR and

PET/MR:

3D PET 5D double-gated PET 5D MoCo PET 5D MoCo MR

motion average

. * .. ’ .0 '
total PET/MR acquisition time: 5 min




Machine Learning
IS the
New Era a.e.”

*Examples were shown at this BASP workshop.
A nice CT example was shown Monday afternoon by Ricardo Otazo.




Limited Angle Example

1 magt
gy et
, ol OuP
N, =N
conv2, Nyx N,
— }-,,:u"'"“lh
[ A

FBP (150°)

Image Prediction for Limited-Angle Tomography via Deep Learning with Convolutional Neural Network.
Hanming Zhang, Liang Li, Kai Qiao, Linyuan Wang, Bin Yan, Lei Li, Guoen Hu. arXiv 2016.




MAR Example

 Deep CNN-driven patch-based combination of the
advantages of several MAR methods trained on
simulated artifacts

Input Data Feature maps Feature maps Feature maps Feature maps Output
3@64x 64 32@64x 64 32@64x 64 32@64x 64 32@64x 64 1@64x 64

| =1

Convolution Convolution Convolution Convolution .
+RelU +RelU +RelU | +RelU ; Convolution

- followed by segmentation into tissue classes

- followed by forward projection of the CNN prior and
replacement of metal areas of the original sinogram

- followed by reconstruction

Yanbo Zhang and Hengyong Yu. Convolutional Neural Network Based Metal Artifact Reduction in X-Ray
Computed Tomography. TMI 37(6):1370-1381, June 2018. Le




(a) Reference Image

(b) Original Image
.= input feature 1

(c) BHC
|nput featurg -

.S g

A £V

|nput feature 3

§ ®

(a) NMIART Prior

(f) NMAR2

(g) CNN'Image

t

o
<

~

(h) CNN-MAR
= proposed method

ST | N

- -
v

NMAR and FSNMAR:

(b) NMARZ2 Prior

K

(c) CNN-Prior
= ou tput

200" oy
3%»

E. Meyer, M. KachelrieB. Normalized metal artifact
reduction (NMAR) in computed tomography. Med. Phys.

37(10):5482-5493, Oct. 2010.

E. Meyer, M. KachelrieB. Frequency split metal artifact
reduction (FSMAR) in CT. Med. Phys. 39(4):1904-1916,

April 2012.




Sparse View Reconstruction Example

(a) Depth-wise receptive field Ground truth Total variation Proposed

(a) 48 view

(b) Layer-wise receptive field

Wit

== Max pooling == Avg unpooling Conv Receptive field

(b) 64 view

X - Y : Compasite

(c) 96 view

)
e
+
age 3 I 1 r
A Taged -] [11] |
o gy R i+ a4t

= 2x2 Max pooling = 2x2 Avg unpooling — 1x1 Conv 3x3 Conv, bnorm, Relld = Skip + Concat

Figure 1. The proposed deep residual leaming architecture for sparse view CT reconstruction

Yo Seob Han, Jaejun Yoo and Jong Chul Ye. Deep Residual Learning for Compressed Sensing CT dkf
Reconstruction via Persistent Homology Analysis. ArXiv 2016. z.



Ground truth Total variation Proposed

(a) 48 view

(b) 64 view

(c) 96 view




Sparse CT Recon with
Data Consistency

I T-DCH=U(X, )

g=rgon

im0

{ K E
3 ZK 2 i _2x I =
ncodin ase ' 5 . Décodlng Phase a e rs S
x3-Convolution - BN - Rell) ——p 2x2-Max Pooling Upsampling - 3x3-Convolution

1x1-Convolution =———pSkip-Connections/Concatenation

A. Kofler, M. KachelrieB, et al. A U-Nets Cascade for Sparse View Computed Tomography, MICCAI 2018 dkfz.



Noise Removal Example

Input:
low-dose

Input (NxNxZ)| CT images

"R Conv2D 128, (9x9)
S

Batch Normalization

|ReLU Activation

2D
x16, (3x3)

. r_‘oncaltena te S ki p
Batch Norlmahzatlun_ : Con nectiOI’]

RelU Activation

Batch Normalization| ",-" I - P red i C!ed
|RelLU Ac[tivatlurl y, £ _ n0|se

Conv2D 1, (3x3) NOiSEEA
Qutput (Rxtixd) subtraction
Architecture based on state-of-the art
networks for image classification (ResNet).
32 conv layers with skip connections denoised I 3l loss function |,
About 2 million tunable parameters in total CT images | \._

Input is arbitrarily-size stack of images, | Full-do-se
with a fixed number of adjacent slices in reference
the channel/feature dimension.

|'-|-)-———"""_ i

1

Output: " MSE

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose
CT Images Using a Deep Convolutional Neural Network. Proceedings of the CT-Meeting 2018. dkfz.




Noise Removal Example

g d R 1
K "-I'."“ nl :':.:-{,

T
L .":“aﬁ -

Low dose images (1/4 of full dose)

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose
CT Images Using a Deep Convolutional Neural Network. Proceedings of the CT-Meeting 2018. dkfz.




Noise Removal Example

Denoised low dose

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose
CT Images Using a Deep Convolutional Neural Network. Proceedings of the CT-Meeting 2018. dkfz.




Noise Removal Example

Full dose

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose
CT Images Using a Deep Convolutional Neural Network. Proceedings of the CT-Meeting 2018. dkfz.




Noise Removal Example

Denoised full dose

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose
CT Images Using a Deep Convolutional Neural Network. Proceedings of the CT-Meeting 2018. dkfz.




Scatter

« X-ray scatter is a major cause of image quality

degradation in CT and CBCT.

« Appropriate scatter correction is crucial to maintain
the diagnostic value of the CT examination.

Primary intensity

%

CT image

: L CT reconstruction
\ >
¢

A
&

|
|

@ scatter
|

CT reconstruction

C=0HU, W =800 HU




Scatter Correction

Scatter suppression Scatter estimation

« Anti-scatter grids  Monte Carlo simulation

« Collimators » Kernel-based approaches

° ... « Boltzmann transport
Primary modulation
Beam blockers

Anti-scatter grid
Measured intensity Scatter estimate

Collimator i . -. L - .




Monte Carlo Scatter Estimation

- Simulation of photon trajectories according to
physical interaction probabilities.

- Simulating a large num»~ ries well

aPProxme’ ‘tO 10 hO

viniplete scatter
distribution




Deep Scatter Estimation (DSE)

Train a deep convolutional neural network /”*'N) to
estimate scatter using a functi~= -~
projection data a= -

oﬂ

Input: 7'(p)

»

J. Maier, M. KachelrieB et al. Deep scatter estimation (DSE). Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. KachelrieB et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019. dk‘fz.




Deep Scatter Estimation

Network architecture & scatter estimation framework

Output:
384 x 256 x 4 scatter estimate

X '
Downsampling

and application 96 x 64 x 80 Upsampling
of operator to original
T(p) size

192 x 128 x 40

48 x 32 x 160

24 x 16 x 320

2 x 8 x 480 O 3 x 3 Convolution, ReLU
- ® 1x 1 Convolution, ReLU

—O 2 x 2 Max. Pooling

2 x 2 Upsampling
Projection data 6 x 4 x 960 -O- Depth Concatenate

J. Maier, M. KachelrieB et al. Deep scatter estimation (DSE). Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. KachelrieB et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019. dk‘fz.




Training the DSE Network

CBCT Setup Primary intensity =~ MC scatter simulation Poisson noise

e 5
' ¥

Desired output

Simulation of 12000 flat detector projection
using data of different heads.

Simulate different tube voltages.

Splitting into 80% training and 20%
validation data.

Optimize weights of the CNN to reproduce
the Monte Carlo scatter estimates:

(w,b) = argmin||DSEw 5(T(p)) — Incll2

Training on a GeForce GTX 1080 for
80 epochs.

J. Maier, M. KachelrieB et al. Deep scatter estimation (DSE). Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. KachelrieB et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019. dk‘fz.




Results on Simulated Projection Data

Primary Scatter ground (Kernel — GT) (Hybrid - GT) (DSE - GT)
intensity truth (GT) [ GT [ GT [ GT

View #1 [ 1 ’ 1M | 7E 1.2%

- mean mean mean
- 2

psolute absolute absolute

percentage per. percentage
erro‘ ‘ e error
. over ow over

projections projections projections

b |
N

.’.‘

View #5 1
C=0%W=50%M C=0%W=50%1 C=0%W=50%

DSE trained to estimate scatter from primary plus scatter: High accuracy dk‘fz.




Reconstructions of Simulated Data

Kernel-Based Hybrid Scatter Deep Scatter

Ground Truth No Correction Scatter Estimation Estimation Estimation
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Difference to ideal
simulation

C=0HU, W=1000 HU

J. Maier, M. KachelrieB et al. Deep scatter estimation (DSE). Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. KachelrieB et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019. dk‘fz.




Testing of the DSE Network for
Measured Data (120 kV)

DKFZ table-top CT

'\' -

| & 4 : . o

Measurement to be corrected

X-ray source

Detector

Measurement of a head
phantom at our in-house

table-top CT. Collimator I //q\

Ground truth: slit scan

)

- Slit scan measurement . ~ .
serves as ground truth. X-ray source I Oy

Detector

J. Maier, M. KachelrieB et al. Deep scatter estimation (DSE). Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. KachelrieB et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019. dk‘fz.




Reconstructions of Measured Data

: : Kernel-Based Hybrid Scatter Deep Scatter
Slit Scan e (R Scatter Estimation Estimation Estimation
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J. Maier, M. KachelrieB et al. Deep scatter estimation (DSE). Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. KachelrieB et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019. dk‘fz.




A simple detruncation was applied to the rawdata before reconstruction. Images were clipped to the FOM before display. C = -200 HU, W = 1000 HU.

Truncated DSE

it 41

40 x 40 cm?
flat detector

uncorrected MC-corrected

=57

40 x 40 cm?
flat detector

To learn why MC fails at truncated data and what significant efforts are necessary to cope with that situation see [KachelrieB et al.
Effect of detruncation on the accuracy of MC-based scatter estimation in truncated CBCT. Med. Phys. 45(8):3574-3590, August 2018].

J. Maier, M. KachelrieB et al. Deep scatter estimation (DSE) for truncated cone-beam CT (CBCT). RSNA 2018. dkfz.




Conclusions on DSE

DSE needs about 20 ms per projection. It is a fast and
accurate alternative to Monte Carlo (MC) simulations.

DSE outperforms kernel-based approaches in terms
of accuracy and speed.

Interesting observations
— DSE can estimate scatter from a single (!) x-ray image.
— DSE can accurately estimate scatter from a primary+scatter image.
— DSE cannot accurately estimate scatter from a primary only image.
— DSE may thus outperform MC even though DSE is trained with MC.

DSE is not restricted to reproducing MC scatter
estimates.

DSE can rather be trained with any other scatter
estimate, including those based on measurements.




Deep Dose Estimation (DDE)

CT image Photo effect dose

MC

48
slices

whole
body 20 h 5s

1h

MC uses 16 CPU kernels
DDE uses one Nvidia Quadro P600 GPU

DDE training took 30 h for 200 epochs,
720 samples, 48 slices per sample

DDE prediction Relative Error
I e

¢!

:‘h.\l
=0%, W=30%

R I Ve

J. Maier, E. Eulig, S. Dorn, S. Sawall, and M. KachelrieB. Real-time patient-specific CT dose estimation
using a deep convolutional neural network. Proc. IEEE MIC 2018.




Conclusions on Deep CT

« Machine learning will play a significant role
in CT image formation.

« High potential for
— Artifact correction
— Noise and dose reduction
— Real-time dose assessment (also for RT)

« Care has to be taken

— Underdetermined acquisition, e.g. sparse view or
limited angle CT, require the net to make up information!

— Nice looking images do not necessarily represent the ground truth.

— Data consistency layers may ensure that the information that is
made up is consistent with the measured data.




Thank You!

(C‘:zﬁ: The 6 International Conference on
Image Formation in X-Ray Computed Tomography

August 3 - August 7 # 2020 ¢ Regensburg ¢ Germany e www.ct-meeting.org
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Conference Chair: Marc Kachelrie, German Cancer Research Center (DKFZ), Heidelberg, Germany

This presentation will soon be available at www.dkfz.de/ct.
Job opportunities through DKFZ'’s international Fellowship programs (marc.kachelriess@dkfz.de).
Parts of the reconstruction software were provided by RayConStruct® GmbH, Niirnberg, Germany.




