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Fully Connected Neural Network

« Each layer fully connects to previous layer
 Difficult to train (many parameters in W and b)
« Spatial relations not necessarily preserved

Input Hidden Hidden Hidden Qutput
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y(x) = f(W-z+b) with f(x) = (f(21), f(22),...) point-wise scalar, e.g. f(z) = V0 = ReLU



Convolutional Neural Network (CNN)

* Replace dense Win y(x) = f(W -x + b) by a sparse
matrix W with sparsity being of convolutional type.

« CNNs consist (mainly) of convolutional layers.
« Convolutional layers are not fully connected.

« Convolutional layers are connected by small, say
3x3, convolution kernels whose entries need to be
found by training.

« CNNs preserve spatial relations to some extent.
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Attention: No convolution in depth direction!



U-Netl

Output:

|nput: 384 x 256 x 4
‘ Concatenative skip connection

192 x 128 x 40

96 x 64 x 80
48 x 32 x 160
24 x 16 x 320
12 x 8 x 480 O- 3 x 3 Convolution, ReLU
o ®» 1x1 Convolution, ReLU
O 2 x 2 Max. Pooling
2 x 2 Upsampling
6 x 4 x 960 -O- Depth Concatenate

10. Ronneberger, P. Fischer, and T. Brox. U-net: Convolutional networks for dkfz
®

biomedical image segmentation. Proc. MICCAI:234-241, 2015.



Generative Adversarial Network?
(GAN)

« Useful, if no direct ground truth (GT) is available, the
training data are unpaired, unsupervised learning

- generate % detect

Counterfeiter fake currency fake currency Police
Generator G Discriminator D

true =1, fake=0
sigmoid in-between

provide
true data

Treasury
Data pool

1Goodfellow et al. 2014 dkfz'
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Making up data

Noise reduction

Replacement of lengthy computations
Image reconstruction

N




Part 1;

Making up Data




Limited Angle Example

FBP (150°) CNN

Image Prediction for Limited-Angle Tomography via Deep Learning with Convolutional Neural Network. dkf
i g, Liang Li, Kai Qiao, Linyuan Wang, Bin Yan, Lei Li, Guoen Hu. arXiv 2016. z.



MAR Example

 Deep CNN-driven patch-based combination of the
advantages of several MAR methods trained on
simulated artifacts

Input Data Feature maps Feature maps Feature maps Feature maps Output
32@64x 64 32@64x 64 32@64x 64 32@64x 64 1@64x 64
)
UL .

Convolution Convolution Convolution Convolution .
+ RelU +RelU +RelU +RelU Convolution

- followed by segmentation into tissue classes

» followed by forward projection of the CNN prior and
replacement of metal areas of the original sinogram

« followed by reconstruction

Yanbo Zhang and Hengyong Yu. Convolutional Neural Network Based Metal Artifact Reduction in X-Ray dkfz
@

Computed Tomography. TMI 37(6):1370-1381, June 2018.
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Sparse View Restoration Example

(a) Depth-wise receptive field Ground truth 2 Total variation Proposed

(a) 48 view

=) Max pooling ™ Avg unpooling Conv Receptive field
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X : Input Y : Label X - ¥ : Composite

(c) 96 view

= 2x2 Max pooling 2x2 Avg unpooling 1x1 Con 3x3 Conv, bnorm, RelU

Figure 1. The proposed deep residual learning architecture for sparse view CT reco

Yo Seob Han, Jaejun Yoo and Jong Chul Ye. Deep Residual Learning for Compressed Sensing CT
Reconstruction via Persistent Homology Analysis. ArXiv 2016.




Proposed

Ground truth X : Input Total variation

(a) 48 view

(b) 64 view

(c) 96 view




Yi 17
X I Dgaugu[g It I-. B D-g;;gu[g H U( >(l )

Sparse CT Recon with
s Dota Consistency
sl | 0\ 'S (DCLS)

1x1-Convolution - Skip-Connections/Concatenation

U-NeRERIVARMRCL )

A. Kofler, M. Haltmeier, C. Kolbitsch, M. KachelrieR, and M. Dewey. A U-Nets Cascade for Sparse dkfz
View Computed Tomography, MICCAI 2018 o



Part 2:

Noise Reduction




Noise Removal Example 1

« 3-layer CNN uses low dose and corresponding
normal dose image patches for training

Low dose ASD-POCS

e

Hu Chen, Yi Zhan, Weihua Zhang, Peixi Liao, Ke Li, Jiliu Zhou, and Ge Wang. Low-dose CT via convolutional dkf
neural network. Biomedical Optics Express 8(2):278381, February 2017. z.



Noise Removal Example 2

Task: Reduce noise from low dose CT images.
A conditional generative adversarial networks (GAN) is used

Generator G:
— 3D CNN that operates on small cardiac CT sub volumes

— Seven 3x3x3 convolutional layers yielding a receptive field of 15x15%15
voxels for each destination voxel

— Depths (features) from 32 to 128 _ Generator CYR G
— Batch norm only in the hidden layers [ :
— Subtracting skip connection Dencis
» Discriminator D: o Gt
— Sees either routine dose image or a
generator-denoised low dose image Oro
— Two 3x3x3 layers followed by several | Qetio)

3x3 layers with varying strides
— Feedback from D prevents smoothing.
Training:

— Unenhanced (why?) patient data acquired
with Philips Briliance iCT 256 at 120 kV.

— Two scans (why?) per patient, one with 0.2 mSv and one with 0.9 mSv effective dose.

ODenoised CT G(l,p)

O Routine-dose CT /zp

J. Wolterink, T. Leiner, M. Viergever, and I. ISgum. Generative Adversarial Networks for Noise

Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.



Noise Removal Example 2

G, and G, include supervised learning and thus
perform only with phantom measurements.

* G;Is unsupervised.

* G, Is said to generate images with a more similar
appearance to the routine-dose CT. Feedback from
the discriminator D prevents smoothing the image.

Generator G, Generator G, Generator G;

IG(ILo)-rol 13

J. Wolterink, T. Leiner, M. Viergever, and I. ISgum. Generative Adversarial Networks for Noise
Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.




Noise Removal Example 2

Low dose image (0.2 mSv)
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Noise Removal Example 2
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iDose level 3 reconstruction (0.2 mSv)

J. Wolterink, T. Leiner, M. Viergever, and I. ISgum. Generative Adversarial Networks for Noise

Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.



Noise Removal Example 2

Denoised low dose image (0.2 mSv)

J. Wolterink, T. Leiner, M. Viergever, and I. ISgum. Generative Adversarial Networks for Noise

Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.



Noise Removal Example 2

Vg i

Normal dose image (0.9 mSv)

J. Wolterink, T. Leiner, M. Viergever, and I. ISgum. Generative Adversarial Networks for Noise

Reduction in Low-Dose CT. IEEE TMI 36(12):2536-2544, Dec. 2017.



Noise Removal Example 3

Input:
low-dose
Input (NxNxZ) CT Imag es
~ Conv2D 128, (9x9)
-
Batch Normalization ) B iy
ReLU Activation ‘ Residual Block
Group Conv2D Residual Block|
8x16, (3x3)
Residual Block| .
Batch Normalization ggll’]pn eCt | on
ReLU Activation Residual Block|
Residual Block _
[Batch Normalization / esf o — PredICted
RelLU Activation ’_/ / ReSldual B'OCk n 0 I S e
| e Residual Block
H— :
r Residual Block|
Neflee
Dutayt Cit1) subtraction E‘
* Architecture based on state-of-the art
networks for image classification (ResNet).
« 32 conv layers with skip connections OUIPILIE Ioss'\f/IuSnEction
>~ _ denoised >
« About 2 million tunable parameters in total CT images :
* Inputis arbitrarily-size stack of images, Full-dose
with a fixed number of adjacent slices in reference

the channel/feature dimension.

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT dkfz
@

Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.



Noise Removal Example 3

Low dose images (1/4 of full dose)

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT dkfz
o

Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.



Noise Removal Example 3

Denoised low dose

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT dkfz
o

Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.



Noise Removal Example 3

Full dose

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT dkfz
o

Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.



Noise Removal Example 3

Denoised full dose

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose CT dkfz
o

Images Using a Deep Convolutional Neural Network. Proceedings of the 5th CT-Meeting: 399-402, 2018.



... and its Extension to DECT

Low dose

low KV high KV Full dose (1/4 of full dose) ~ Denoised low dose

Encader Black |

Residual Block

Andrew D. Missert, Lifeng Yu, Shuai Leng, and Cynthia H. McCollough. Noise Subtraction for Dual Energy
CT Images Using a Deep Convolutional Neural Network. AAPM annual meeting 2019. dk z.



Noise Removal Example 4

Low-dose Image
(Input)

Denoised Image
(Output)

—>[ ConvNet, }9

ConvNet Process

Step1 ¢ :Step 2

3 High Frequency
Wavelet b.ased J—’ Residual Image
¥ i
processing (L)

| Low Frequency |
Residual Image

(T1r%)

= Residual Image
RLNet =] '

_+_

High-Freduency Details of Residual
IMage Estimation

Residual Image Estimation

r
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

Residud)image , High Frequebcy Residual Image|

Wavelet A 4 4 Wavelet
Transform : Transform
L )

Conv+RelLU
Conv+BN+RelLU
Conv+BN+RelLU

Y. Wang et al. Iterative quality enhancement via residual-artifact learning networks for low-dose CT.
Phys. Med. Biol. 63:215004, 2018. dk‘fz.



IRLNet(10 mAs, A-Net)

-Net)

T

IRLNet(10 mAs

FBP(10 mAs)

FBP(200 mAs)




Noise Removal Example 5

se 1

ECG-based TCM yields cardiac
phases with hlgh noise. e G

Train a cycle GAN that learns from the low noise
phases to remove noise in the high noise phases.

50 patient cases
used for training.

Nice results!

* Ligentity1 = |1Gap(xp) — x5l

Lidentityz = ”GBA(xA) - xA”l

XBAB

A = high noise
B =low noise

E. Kang, J.C. Ye et al. Cycle-consistent adversarial denoising network for multiphase dkfz
@

coronary CT angiography. Med. Phys. 46(2), February 2019.
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Noise Removal Example 6
Canon‘s AICE

Training AiCE — Deep Learning
Anatomical
model

Scanner ] — Statistical
model

Network Training Optics
model

Low-quality Input Data High-quality Target
Multiple Variations Advanced MBIR

AiCE — Validated Deep Convolutional Neural Network

CAiCE

Integrated Intelligence

Data Acquisition AiCE Image

Information taken from https://global.medical.canon/products/computed-tomography/aice_dIr dkfz.



U =100 kV

CTDI = 0.6 mGy
DLP =24.7 mGy-cm
Dy = 0.35 mSv

“—{ Courtesy of
— . Radboud ,
FIRST Lung (full'iterative) AICE Lung (deep Tearning the?\letﬂg”:?dcs



Noise Removal Example 7
GE’s True Fidelity

« Based on a deep CNN

 Trained to restore low-dose CT data to match the
properties of Veo, the model-based IR of GE.

* No information can be obtained in how the training is
conducted for the product implementation.

2.5D DEEP LEARNING FOR CT IMAGE RECONSTRUCTION USING A MULTI-GPU
IMPLEMENTATION

Amirkoushyar Ziabari*, Dong Hye Ye * T Somesh Srivastavat, Ken D. Sauer ©

Jean-Baptiste Thibault t Charles A. Bouman*

* Electrical and Computer Engineering at Purdue Uni ity
f Electrical and Computer Engineering at Marquett University
{ GE Healthcare
@ Electrical Engineering at University of Notre Dame

ABSTRACT rse projection views in CT
i et al. developed method
ncorporating CNN denoisers into MBIR reconstruction

nced prior models using the Plug-and-Play framework

While Model Based Iterative Reconstruction (MBIR) of C
scans has been shown to have better image quality than Fil-
tered Back Projection (FBP), its use has been limited

high computational cost. More recently, deep convolutional
neural networks (CNN) have shown great promise in both de-
noising and reconstruction applications. In this research, we
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CV] 9 Aug 2018

No Low Noise Images Reqguired to
Train Denoising Networks!

Noise2Noise: Learning Image Restoration without Clean Data

Jaakko Lehtinen' > Jacob Munkberg' Jon Hasselgren' Samuli Laine! Tero Karras' Miika Aittala’® Timo Aila'

Abstract renderings of a synthetic scene, etc. Significant advances
have been reported in several applications, including Gaus-
) ) ) . sian denoising, de-JPEG, text removal (Mao et al., 2016),
construction by machine learning — learning to Ny . o

= super-resolution (Ledig et al., 2017), colorization (Zhang

map corrupted observations to clean signals — with . R ;
I.) P . = ) et al.. 2016). and imaee innaintine (lizuka et al.. 2017). Yet.
a simple and powerful conclusion: it 1w- ™ el M , o e e ] P N T

We apply basic statistical reasoning to signal re-

ble to learn to restore images by only lo -
corrupted examples, at performance at ar
times exceeding training using clean data,
explicit image priors or likelihood mode ¢
corruption. In practice, we show that

tion of undersampled MRI scans — all e«
by different processes — based on noisy d |

Ground truth Input Comparison

J. Lehtinen et al. NG,
Clean Data. https://arxiv.org/pdf/1803.04189.pdf. August 2018. a




No Low Noise Images Reqguired to
Train Denoising Networks!

Estimation can be regarded as ML estimation by interpreting the
loss function as the negative log likelihood.

On expectation, the estimate remains unchanged if we replace
the targets with random numbers whose expectations match
the targets.

Input-conditioned target distributions p(y|x) can be replaced
with arbitrary distributions that have the same conditional
expected values.

Consequently, we may corrupt the training targets of a neural
network with zero-mean noise without changing what the
network learns.

Useful for image restoration tasks where the expectation of the
corrupted input data is the clean target that we seek to restore.

Denoising possible if at least two realizations of each image are
available.

J. Lehtinen et al. Noise2Noise: Learning Image Restoration without

Clean Data. https://arxiv.org/pdf/1803.04189.pdf. August 2018.
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Noise Removal Example 8
(Tralnlng on N0|sy CT Targets)

MAE:128.342, SNR:13.772, SSIM: 0.306 MAE:26.710, SNR:27.232, SSIM: 0.846 MAE:27.284, SNR:27.301, SSIM: 0.824
(a) Low-dose (b) Rawdata domain Ld2Ld (c) Image-domain Ld2Ld

.-n.

)

\\\ Q A: " - ¢ \ "“ \ a ' 33 . J .\ ‘ ¥ 7
B e T e s - S \~\_\ __‘7‘/--/ s . \\ e L e

MAE:26.595, SNR:27.281, SSIM: 0.839 MAE:26.135, SNR:27.725, SSIM: 0.845

(d) Reference (e) Rawdata domain Ld2Hd (f) Image-domain Ld2Hd
N. Yuan, J. Zhou, J. Qi. Low-dose CT image denoising without high-dose reference images. dkf
e

Proc. 15th Fully3D Meeting 110721C:1-5, 2019.



Part 3:

Replacement of Lengthy Computations
Fast Physics




Empirical Shading Correction:
ScatterNet

 Netto convert CBCT log (why?) rawdata into artifact-free data.

* Net architecture:
— Small receptive field spectrum converter block adapts the attenuation values.
— Residual U-Net then follows to account for scatter.

* Pixel-wise loss function comparing the corrected CBCT projections
with those of the reference shading correction method.

 Reference shading correction method:
— Use data from a clinical CT scan as an artifact-free prior.
— Intensity domain frequency split between planning CT and CBCT:

» Deformably register planning CT onto CBCT and forward project and
exponentiate to obtain “ideal” intensity data

» Scale CBCT intensities to match the prior CT intensities
» Corrected intensities = LP(forward proj. CT)+HP(scaled uncorr. CBCT)

« ScatterNet replaces the previous correction method and thus
speeds up computation and does not make use of the planning CT.

D. Hansen, K. Parodi et al. ScatterNet: A convolutional neural network for cone-beam CT intensity correction, Med. Phys., Sep. 2018. dKfZ.



ScatterNet

Sp ectrum \Conven: hlock}i 1 »—M

converter block

1 Convolution 1x1
[Res block }——————————————————Mix block|
\ gf
\8 [Up block]

Y

*
Down block Mix block
Convolution 3x3, 8—1 channels \

16/

\e Up block
Down block "Mix block
"‘.

32/

Down block Mix block

64/

\
\

\ 64

Down block

2

. Hansen, K. Parodi et al. ScatterNet: A convolutional neural network for cone-beam CT intensity correction, Med. Phys., Sep. 2018. dkuO



Deep Scatter Estimation




Scatter Correction

Scatter suppression Scatter estimation

« Anti-scatter grids  Monte Carlo simulation

« Collimators « Kernel-based approaches
° ... « Boltzmann transport

* Primary modulation
« Beam blockers

Anti-scatter grid
\ Measured intensity  Scatter estimate

i 1

Colllmator -l

-t




Monte Carlo Scatter Estimation

« Simulation of photon trajectories according to
physical interaction probabilities.

* Simulating a large numb~ 5 ries well
our

apIOrOX|rrm1~“:O 10 h data se".

c Zulllpl
ographt




Deep Scatter Estimation (DSE)

Train a deep convolutional neural network *'N) to
estimate scatter using a funcfie= *~
projection data A< ="

J. Maier, M. KachelrieR et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelriel? et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019. dk z.



Deep Scatter Estimation

Network architecture & scatter estimation framework

Output:
Input: ] 384 x 256 x 4 scatter estimate

‘ O- | m=
192 x 128 x 40

Downsampling ‘
and application 96 x 64 x 80 Upsampling
of operator O to or_|g|nal
T(p) Size
48 x 32 x 160
24 x 16 x 320
O- 3 x 3 Convolution, RelLU
12 %8 x 480 ®» 1x1 Convolution, ReLU
—0O 2 x 2 Max. Pooling
2 x 2 Upsampling
Projection data 6 x 4 x 960 O- Depth Concatenate

J. Maier, M. Kachelriel3 et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018. dkfz
&

J. Maier, M. Kachelrie et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Training the DSE Network

CBCT Setup Primary intensity MC scatter simulation P0|sson;_r10|se

\ 1 :
‘
4

Desired output

A
¥
™

.. = Simulation of 6000 projections using

¢ @-¢  different heads and acquisition parameters
(80 kV, ..., 140 kV in steps of 20 kV).

» Splitting into 80% training and 20%
validation data.

 Mean S/P =0.9

« 90 percentile S/P =1.32

Py %@ e Training minimizes MSE pixel-wise loss on

/ O aGeForce GTX 1080 for 80 epochs.

‘{i’w
.
&
(;
i,

e
1

e .
= C»ﬁ» =
£

@
g

. Maier, M. KachelrieR et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018. dkfz
o

J. Maier, M. Kachelrie et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Testing of the DSE Network for
Simulated Data (at 120 kV)

CBCT Setup Primary intensity MC scatter simulation Poisson no'iwssw

=
\ 4

Ground truth

B Input

« Application of the DSE network to predict

it "
',v:‘ i:&’: scatter for simulated data of a head
L) O (different from training data).

J. Maier, M. KachelrieR et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018.
J. Maier, M. Kachelriel? et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019. dk z.
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Ref 1: Kernel-Based Scatter Estimation

« Kernel-based scatter estimation?:

— Estimation of scatter by a convolution of the scatter source term 7'(p)
with a scatter propagation kernel G(u, c):

IS, est (U) — (CO p(u) : ep(u)) * (Z e “t (uélicz)z . Z eCS(uézi&L)Q)

| J | j: :I:

T(p)(u) G(u,c)
Open Open
parameters: ' parameters:

Co C1,C2,C3,C4

{ei} =argmin ) ) (I, est(nu, {ei}) = Li(n, w)|3,

! !

Samples of the Scatter estimate MC scatter simulation

training data set

Detector
coordinate

1B. Ohnesorge, T. Flohr, K. Klingenbeck-Regn: Efficient object scatter correction algorithm for third and fourth
generation CT scanners. Eur. Radiol. 9, 563-569 (1999).



Ref 2: Hybrid Scatter Estimation

« Hybrid scatter estimation?:

— Estimation of scatter by a convolution of the scatter source term 7'(p)

with a scatter propagation kernel G(u, c):

IS, est (U) — (CO p(u) : ep(u)) * (Z e “t (Uélicz)z . Z eCS(Uézi&L)Q)

| J | j: :I:

T T

T(p)(u)

Open
parameters: ‘
Co

{citn = argmmz [ s, est(m, w, {¢i}) — Ls(n, )3,

v ! !

Sampgeai;fsgge tey Scatter estimate Coarse MC simulation

- -.‘",‘ \ ',
Detector
coordinate

_ ."'h-";
i ;.}&&) : 2

2M. Baer, M. KachelrieR: Hybrid scatter correction for CT imaging. Phys. Med. Biol. 57, 6849—6867 (2012).

G(u,c)

Open
parameters:
C1,C2,C3,Cq



Results on Simulated Projection Data

Primary Scatter ground (Kernel = GT) (Hybrid - GT) (DSE - GT)
intensity truth (GT) /I GT
View #1 ) - |
ste mean
al apsolute

percenta — ereeRiase percentage

eliio error
Vs over
aII a all
projections ' prejections

View #2

View #3

View #4

View #5

L

C=0%,W=50%

C=0%, W=50

DSE trained to estimate scatter from primary plus scatter: High accuracy dk‘fz.



Results on Simulated Projection Data

Primary Scatter ground (Kernel — GT) (Hybrid - GT) (DSE - GT)
intensity truth (GT) /GT [ GT [ GT

. -
View #1 l M. 6.4%
mean : mean
@solute solute E absolute

percenta e percentage
error
: over
View #2 a” Al
projections projections projections
View #3 l
View #4 ‘
View #5 P
C=0% W=50% C=0%, W= 50/

DSE trained to estimate scatter from primary only: Low accuracy



Results on Simulated Projection Data
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DSE trained to estimate scatter from primary plus scatter: High accuracy dk‘fz.



Reconstructions of Simulated Data
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J. Maier, M. Kachelriel3 et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018. dkfz
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J. Maier, M. Kachelrie et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Testing of the DSE Network for
Measured Data (120 kV)

DKFZ table-top CT

Measurement to be corrected

| &

X-ray source

1

N | Detector
A

« Measurement of a head
phantom at our in-house

table-top CT. CoIIimatorI (’\\

« Slit scan measurement o ——
serves as ground truth. X-ray source I L

Ground truth: slit scan

Detector

J. Maier, M. Kachelriel3 et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018. dkfz
o

J. Maier, M. Kachelrie et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Reconstructions of Measured Data

Kernel-Based Hybrid Scatter Deep Scatter
Scatter Estimation Estimation Estimation

Slit Scan No Correction

CT Reconstruction

Difference to slit scan

C=0HU, W=1000HU

J. Maier, M. Kachelriel3 et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018. dkfz
o

J. Maier, M. Kachelrie et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



A simple detruncation was applied to the rawdata before reconstruction. Images were clipped to the FOM before display. C = -200 HU, W = 1000 HU.

Truncated DSEL?

40 x 40 cm?
flat detector

Ground truth Uncorrected MC-corrected DSE

40 x 40 cm?2
flat detector

To learn why MC fails at truncated data and what significant efforts are necessary to cope with that situation see [Kachelriel3 et al.
Effect of detruncation on the accuracy of MC-based scatter estimation in truncated CBCT. Med. Phys. 45(8):3574-3590, August 2018].

1J. Maier, M. Kachelriel et al. Deep scatter estimation (DSE) for truncated cone-beam CT (CBCT). RSNA 2018. dkfz
o

2J. Maier, M. Kachelriel3 et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Generalization

to Different Anatomical Regions

DSE Head Thorax | Abdomen
Head 1.2 21.1 32.7
Thorax 8.8 1.5 9.1
Abdomen 11.9 10.9 1.3
All data

Values shown are the mean absolute percentage errors (MAPES) of the testing data.
Note that thorax and head suffer from truncation due to the small size of the 40x30 cm flat detector.

J. Maier, M. Kachelriel3 et al. Deep scatter estimation (DSE). SPIE 2017 and Journal of Nondestructive Evaluation 37:57, July 2018. dkfz
&

J. Maier, M. Kachelrie et al. Robustness of DSE. Med. Phys. 46(1):238-249, January 2019.



Conclusions on DSE

 DSE needs about 20 ms per projection. It is a fast and
accurate alternative to Monte Carlo (MC) simulations.

 DSE outperforms kernel-based approaches in terms
of accuracy and speed.

 Interesting observations
— DSE can estimate scatter from a single (!) x-ray image.
— DSE can accurately estimate scatter from a primary+scatter image.
— DSE cannot accurately estimate scatter from a primary only image.
— DSE may thus outperform MC even though DSE is trained with MC.

 DSE is not restricted to reproducing MC scatter
estimates.

« DSE can rather be trained with any other scatter
estimate, including those based on measurements.



Estimation of Dose Distributions

Useful to study dose reduction techniques
— Tube current modulation
— Prefiltration and shaped filtration
— Tube voltage settings

Useful to estimate patient dose
— Risk assessment requires segmentation of the organs (difficult)
— Often semiantropomorphic patient models take over

— The infamous k-factors that convert DLP into D are derived this way,
e.0. Kepest = 0.014 mSv/mGy/cm

Useful for patient-specific CT scan protocol optimization
However: Dose estimation does not work in real time!

J. Maier, E. Eulig, S. Sawall, and M. Kachelrie3. Real-time patient-specific CT dose estimation using a deep convolutional neural dkfz
®

network, Proc. IEEE MIC 2018 and ECR Book of Abstracts 2019. Best Paper within Machine Learning at ECR 2019!



Influence of Bowtie Filter

« Commercial CT-scanners are usually equipped with a bowtie
filter in order to optimize the patient dose distribution.

* Monte-Carlo dose calculations or statistical reconstruction
algorithms require exact knowledge of the bowtie filter.

« The shape as well as the composition of the bowtie filter is
usually not disclosed by the CT vendors.

-

Source Patient dose Patient dose
distribution of a distribution of a
Bowtie Filter ), d circular scan circular scan with
without bowtie filter bowtie filter

=

4
arbitrary units

Detem

J. Maier, E. Eulig, S. Sawall, and M. Kachelrie3. Real-time patient-specific CT dose estimation using a deep convolutional neural dkfz
o

\

network, Proc. IEEE MIC 2018 and ECR Book of Abstracts 2019. Best Paper within Machine Learning at ECR 2019!



Patient-Specific Dose Estimation

« Accurate solutions:
— Monte Carlo (MC) simulationi, gold standard, stochastic LBTE solver
— Analytic linear Boltzmann transport equation (LBTE) solver?

-> Accurate but computationally expensive

 Fast alternatives:

— Application of patient-specific conversion factors to the DLPS.
— Application of look-up tables using MC simulations of phantoms*.
— Analytic approximation of CT dose deposition®.

- Fast but less accurate

1G. Jarry et al., “A Monte Carlo-based method to estimate radiation dose from spiral CT”, Phys. Med. Biol. 48, 2003.
2A. Wang et al., “A fast, linear Boltzmann transport equation solver for computed tomography dose calculation
(Acuros CTD)”. Med. Phys. 46(2), 2019.

3B. Moore et al., “Size-specific dose estimate (SSDE) provides a simple method to calculate organ dose for pediatric
CT examinations”, Med. Phys. 41, 2014.

4A. Ding et al., “VirtualDose: a software for reporting organ doses from CT for adult and pediatric patients”, Phys.
Med. Biol. 60, 2015.

5B. De Man, “Dose reconstruction for real-time patient-specific dose estimation in CT”, Med. Phys. 42, 2015.



Deep Dose Estimation (DDE)

« Combine fast and accurate CT dose estimation using
a deep convolutional neural network.

e Train the network to reproduce MC dose estimates
given the CT image and a first-order dose estimate.

2-channel input:
CT image |

256 x 256 x 48 x 16
128 x 128 x 24 x 32
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target:
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1M. Baer, M. KachelrieR.
Phys. Med. Biol. 57, 2012.

3 x 3 x 3 Convolution (stride = 1), ReLU ' 3 x 3 x 3 Convolution (stride = 2), ReLU 1 x1 x 1 Convolution (stride = 1), ReLU 2 x 2 x 2 Upsampling
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J. Maier, E. Eulig, S. Sawall, and M. Kachelrie3. Real-time patient-specific CT dose estimation using a deep convolutional neural dkfz
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network, Proc. IEEE MIC 2018 and ECR Book of Abstracts 2019. Best Paper within Machine Learning at ECR 2019!



Training and Validation

« Simulation of 1440 circular dual-source
CT scans (64x0.6 mm, FOM, = 50 cm, TUbeA
FOM; = 32 cm) of thorax, abdomen,
and pelvis using 12 different patients.

« Simulation with and without bowtie.
 No data augmentation

 Reconstruction on a 512x512x%96 grid ~N
with 1 mm voxel size, followed by 2x2x2
binning for dose estimation.

« 9 patients were used for training and 3 for testing.

 DDE was trained for 300 epochs on an Nvidia Quadro
P6000 GPU using a mean absolute error pixel-wise
loss, the Adam optimizer, and a batch size of 4.

 The same weights and biases were used for all cases.

Tube

1440 = 12 patients x 20 z-positions x 6 modes (A, A+bowtie, A+bowtie+TCM, B, B+Bowtie, B+bowtie+TCM) dku.



Results

Thorax, tube A, 120 kV, with bowtie
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Results

Thorax, tube A, 120 kV, no bowtie
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J. Maier, E. Eulig, S. Sawall, and M. Kachelrie3. Real-time patient-specific CT dose estimation using a deep convolutional neural
network, Proc. IEEE MIC 2018 and ECR Book of Abstracts 2019. Best Paper within Machine Learning at ECR 2019! dk z.



Results

Thorax, tube B, 120 kV, no bowtie
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Results

Abdomen, tube A, 120 kV, with bowtie
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Results

Abdomen, tube A, 120 kV, no bowtie

CT image First order dose
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Results

Abdomen, tube B, 120 kV, no bowtie
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Results

Pelvis, tube A, 120 kV, with bowtie
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Results

Pelvis, tube A, 120 kV, no bowtie
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Results

Pelvis, tube B, 120 kV, no bowtie

CT image First order dose
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Conclusions on DDE

« As shown, DDE works well with 360° circle scans.

 What is not shown in this presentation is that DDE
can be trained to provide accurate dose predictions
— for sequence scans
— for partial scans (less than 360°)
— for spiral scans
— for different tube voltages
— for scans with and without bowtie filtration
— for scans with tube current modulation

* In practice it may therefore be not necessary to
perform separate training runs for these cases.

 Thus, accurate real-time patient dose estimation may
become feasible with DDE.

J. Maier, E. Eulig, S. Sawall, and M. Kachelrie3. Real-time patient-specific CT dose estimation using a deep convolutional neural dkfz
®

network, Proc. IEEE MIC 2018 and ECR Book of Abstracts 2019. Best Paper within Machine Learning at ECR 2019!



Part 4:

Image Reconstruction




Often “Just” Image Restoration

Speeding up iterative reconstruction by training a
CNN to convert an FBP image into an iterative image
— Canon'‘s AiCE algorithm
— GE's True Fidelity algorithm
— plus a few more algorithms proposed in the literature

Noise reduction by training, e.g. a mapping from low
dose to high dose images
— many examples in the literature, some in this presentation

Artifact reduction in image domain
— many examples in the literature, one shown in this presentation




Sometimes “Real” Image
Reconstruction

Networks employing data consistency layers
Networks including backprojection layers

Learning of backprojectors

End-to-end training from sinogram to image
Unrolled iterative reconstruction with learned priors
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Variational Network-Based
Image Reconstruction

\

9 : i
Cf) = 11X = pliw + R(f) e vasnat
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Vc(f) =X W (X ; f _ p) + VR(f) ” fL\JA::ctionswhose NN-

based minimization is
motivated by the

f(t+1) _ f(t) _ AVC’(f(t)) primal dual approach.

(b) VU for CT denoising (c) VU for CT reconstruction

E. Kobler, R. Otazo et al. Variational network learning for low-dose CT. Proc. 5t" CT-Meeting:430-434, 2018. dkuO
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Conclusions on Deep CT

 Machine learning will play a significant role
In CT image formation.

« High potential for
— Artifact correction
— Noise and dose reduction
— Real-time dose assessment (also for RT)

« Care has to be taken

— Underdetermined acquisition, e.g. sparse view or
limited angle CT, require the net to make up information!

— Nice looking images do not necessarily represent the ground truth.

— Data consistency layers and variational networks with rawdata
access may ensure that the information that is made up is
consistent with the measured data.
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