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Center Width 

pelvis 35 HU 350 HU 

soft tissue 60 HU 400 HU 

abdomen 40 HU 300 HU 

liver 40 HU 200 HU 

lung -600 HU 1200 HU 

heart 200 HU 600 HU 

bone 450 HU 1500 HU 

spine 40 HU 350 HU 

mediastinum 40 HU 400 HU 

angiography 80 HU 700 HU 
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maximum intensity projection (MIP) 

sliding thin slab (STS) display with 

0.5 mm  slab 

10 mm slab 

mean intensity projection (mean-IP) 

sliding thin slab (STS) display with 



Aim 

To combine mutually exclusive CT image 
properties into a single organ-specific 

image reconstruction and display using 
prior anatomical information. 



Methods 

• Prior anatomical knowledge is gained from an automatic multi-
organ segmentation 

• Hirarchical 3D fully convolutional neural network consisting of 
two consecutive stages1 

– Coarse-to-fine segmentation based on 3D U-Net 

 1. Detection of abdominal cavity 
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Abdominal Multi-Organ Segmentation in Dual Energy CT using Cascaded 3D Fully Convolutional Network. CoRR, 2017 



Methods 

• Prior anatomical knowledge is gained from an automatic multi-
organ segmentation 

• Hirarchical 3D fully convolutional neural network consisting of 
two consecutive stages1 

– Coarse-to-fine segmentation based on 3D U-Net 

 1. Detection of abdominal cavity 

 2. Detection of target organ boundaries 

 

detection of  
multiple organs 

Stage 1 Stage 2 

[1] S. Chen, H. Roth, S. Dorn, M. May, A. Cavallaro, M. Lell, M. Kachelrieß, H. Oda, K. Mori, and A. Maier. Towards Automatic 
Abdominal Multi-Organ Segmentation in Dual Energy CT using Cascaded 3D Fully Convolutional Network. CoRR, 2017 



Methods 

Open-source implementation of two stages cascaded network2 

 fine-tuning of pre-trained network to fit to our data 

 

• 42 contrast-enhanced clinical torso DECT datasets 

– 30 for training, 6 for validation, 6 for test 

 

• NVIDIA GeForce GTX 1080 Ti 

• Training: ~ 3 days per stage 

• Segmentation: several minutes 

 

 

 

[2] H. Roth, H. Oda, Y. Hayashi, M. Oda, N. Shimizu, M. Fujiwara, K. Misawa and K. Mori. Hierarchical 3D fully convolutional 
networks for multi-organ segmentation. arXiv preprint arXiv:1704.06382, 2017 



Methods 

• Automatic segmentation: liver, kidneys, spleen, lung, aorta. 

• Thresholding remaining voxels into the following tissue types: 
muscles, fat, bone, vasculature. 

• Currently, manual corrections are necessary (until today). 

 

 Segmentation delivers a binary mask             for each tissue label 

… 

muscles lung bone heart liver … 

… 



Methods 

• Smoothing of the binary masks             to cope with the 
boundaries of adjacent anatomical structures. 

 

 

 

 

• Zero-mean Gauss,     determines width of overlap in mm. 

• Weighting masks          allow for individual settings for each organ. 

 

… 

Context-sensitive (CS) = organ-dependent parameter adaptation 
 



• Reconstruct B basis          emphasizing certain image properties 

–      = smooth reconstruction  (for e.g. soft tissue, liver, etc.) 

–      = sharp reconstruction  (for e.g. lung, bone, etc.) 

 

• The CSR image is defined as 

 

 

 
 

 

• 𝐿  #labels 

• 𝐵  #basis images 

•     prior organ-specific weight for each voxel 

 

  

 

Context-Sensitive (CS) 
Reconstruction 



Context-Sensitive (CS) 
Display 

• The CS center and width for each voxel is given by 

 

 

 

 

 

 

• 𝐶𝑙, 𝑊𝑙  predefined center/width for label l   

 

• Images are viewed with an adaptive sliding thin slab (STS) technique. 

– STS mean intensity projection in e.g. soft tissue 

– STS maximum intensity projection (MIP) in e.g. lung 

 

  

 



CS Reconstruction 
 

f1 fCSR f2 

C / W = 60 / 400 HU 

standard low resolution 

image (smooth kernel D30f) 
standard high resolution  

image (sharp kernel B70f) 

 

resolution-mixed image  

(high resolution in lung and bone, 

low noise in soft tissue) 



CS Reconstruction 
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xy / mm 

f2 f1 fCSR 

ROI1 lung µ ± σ ROI2 heart µ ± σ 

f1 -820 ± 58 HU 240 ± 48 HU 

f2 -814 ± 152 HU 233 ± 121 HU 

fCSR -814 ± 152 HU 240 ± 48 HU 

 Increased spatial resolution in bone and lung 
 Decreased noise level in soft tissue 



CS Reconstruction 
 

lung window 
C/W = -600/1200 HU 

abdomen window 
C/W = 40 / 300 HU 

bone window 
C/W = 450/1500 HU 

 Need of a context-sensitive display approach! 



CS Display 
Adaptive Windowing 

 



CS Display 
Adaptive Windowing 

 



CS Display 
Adaptive Windowing 

 



CS Display 
Adaptive Windowing 

 



CS Display 
Soft Blending 

• Varying 𝝈 during the 
Gaussian smoothing 
result in different 
blending widths 𝑤𝑙 𝐫   

• We use 3 mm blending 

– Good compromise 
between hard transitions 
and over smoothing 

 

3 mm 



CS Display 
Sliding Thin Slab 

• STS mean in soft tissue 
(5 mm) 

– Less noise in soft tissue 

 



CS Display 
Sliding Thin Slab 

• STS MIP in lung (10 mm)
   

– Better visualization of 
lung vessels 

 



• Simultaneous DE evaluation with commonly used applications 

Context-Sensitive Dual Energy 
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Conclusions 

• Method strongly depends on the segmentation accuracy 

– Still needs improvement 

• Context-sensitive reconstruction 

– Combines mutually exclusive image properties 

» High spatial resolution in bone and lung 

» Low noise in soft tissue 

• Context-sensitive display 

– Able to present significantly more information to the reader simultaneously 

– Dealing with multiple image stacks may be no longer necessary 

 

Outlook 
• Development of GUI for CS reconstruction and display 

• Method readily extendable to multi energy data as well as to other 
modalities 



Thank You! 

This study was supported by the Deutsche Forschungsgemeinschaft 
(DFG) under grant KA 1678/20-1, LE 2763/2-1 and MA 4898/5-1. 

 

This presentation will soon be available at www.dkfz.de/ct. 

 

Job opportunities through DKFZ’s international PhD or Postdoctoral 
Fellowship programs (www.dkfz.de), or directly through Marc Kachelriess 
(marc.kachelriess@dkfz.de).  

 

Parts of the reconstruction software were provided by RayConStruct® 
GmbH, Nürnberg, Germany. 

 


