
Purpose 

Common dosimetric quantities in CT such as the volume 

CT dose index (CTDIvol) or the dose-length product (DLP) 

do not appropriately represent the actual patient dose 

distribution. More sophisticated methods are not real-time 

capable. Therefore, we propose the deep dose estimation 

(DDE), a deep learning-based approach to estimate 

patient dose distributions in real-time. 

 

Material and Methods 

The gold standard to calculate patient-specific dose 

distributions is to perform a Monte Carlo (MC) simulation 

that models the physics of CT dose deposition. Being 

computationally expensive, MC cannot be applied in real-

time. To overcome this drawback without losing accuracy 

we developed the DDE which uses a U-net architecture to 

reproduce MC dose distributions given a CT volume and a 

first order dose estimate volume as two-channel input.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. First-order dose deposition 

Given the emission characteristic of the x-ray source in 

terms of the differential photon fluence        , the first-order 

dose deposition D1st within a volume element dV at 

position r can be calculated as: 

 

 

 

where ρ describes the mass density distribution, PPE / CS 

the probability density for an interaction via photoelectric 

effect (PE) or Compton scattering (CS), and EPE / CS the 

corresponding energy transfer to electrons. Here, the 

interaction probability density is given as: 

 

 

with μPE and μCS being the attenuation due to the 

photoelectric effect and Compton scattering. In case of a 

photoelectric interaction the energy is transferred 

completely to an electron (EPE =  E), while the energy 

transfer of Compton scattering is given as: 

B. Deep dose estimation (DDE) 

1) Data generation: CT images of whole-body CT scans of 

15 patients were used to generate artificial data. Based on 

these prior data, circular CT acquisitions (720 projections / 

360°) with a tube voltage of 120 kV were simulated for 

different anatomical regions (pelvis, abdomen, thorax). 

Additionally,  shaped filters and tube current modulation 

was included in the simulation. CT images were 

reconstructed on a 256×256×48 voxel grid.  

2) Model and training: The DDE network was 

implemented using the Keras framework. The training was 

performed on an Nvidia Quadro P6000 for 200 epochs 

using an Adam optimizer, a batch size of 2, and the mean 

relative error between the output and the MC prediction as 

loss function. As bone is underrepresented in all data sets, 

bone voxels received a twenty-fold weight compared to 

non-bone voxels when evaluating the loss function.  

 

Results 

DDE dose predictions for the validation data set were 

compared against ground truth MC dose estimates. As 

shown in figure 2, DDE yields almost the same accuracy 

as MC calculations, even in regions outside the field of 

measurement where the first-order dose estimate is zero. 

Since the DDE is slightly more blurred than the MC dose 

estimate, higher deviations arise at the boundaries of high 

density structures such as bone. A quantitative evaluation 

of all validation data sets yields a mean relative error of 

3.0 % with respect to the ground truth. Furthermore, it can 

be observed that DDE can handle shaped filters and tube 

current modulation without  a major loss of accuracy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conclusion 

This study demonstrates the potential of DDE to calculate 

dose estimates with similar accuracy as MC simulations. 

Once the DDE is trained (≈ 30 h / 200 epochs and 720 

training samples) a 256×256×48 voxel volume can be 

processed in 0.25 s. Thus, a patient-specific dose 

estimate for a whole-body CT would require less than 5 s.  
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Figure 2: Input and prediction of DDE. A: CT reconstruction. B: First-order 

dose estimate. Note that bone is not visible as we approximate the patient to 

be water equivalent. C: MC dose estimate (ground truth). D: Prediction of 

DDE. E: Relative error of DDE with respect to the ground truth. 

A B 

C D 

C = 0 %, W = 30 % 

E 

y 
x 

z 
x 

y 
z 

     3 x 3 x 3 Convolution, ReLU 
     1 x 1 x 1 Convolution, ReLU 
     3 x 3 x 3 Convolution,  
     stride = 2, ReLU  
     2 x 2 x 2 Upsampling 
     Depth concatenate 

256 x 256 x 48 x 16 

128 x 128x 24 x 16 

64 x 64 x 12 x 64 

32 x 32 x 6 x 128 

16 x 16 x 3 x 256 

256 x 256 x 48 x 2 
CT volume 

First-order 
dose estimate 

MC dose estimate 

Figure 1: Basic principle of DDE. A 2-channel volume consisting of a CT 

reconstruction and a first-order dose estimate is given as input to a 3D U-net 

which is trained to reproduce the corresponding MC dose estimate. 
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MC uses 16 CPU kernels 
DDE uses one Nvidia Quadro P6000 GPU 
 
DDE training took 30 h for 200 epochs, 
720 samples, 48 slices per sample 
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