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Aim
To give a coarse and critical overview of deep 
learning applications in CT image formation.

Conventional image post processing applications, such as image segmentation, image 
registration, image classification etc. as well as CAD applications are not part of this lecture.

Source: 
pubmed.gov

Advanced Search: "ct"[Title/Abstract] AND 
"imaging"[Title/Abstract] AND ("deep

learning"[Title/Abstract] OR "cnn"[Title/Abstract] OR 
"neural network"[Title/Abstract] OR "neural

networks"[tw] ) NOT (classification[Title/Abstract] OR 
segmentation[Title/Abstract] OR 

detection[Title/Abstract]) 

There is a nice special 
issue on machine 
learning for image 

reconstruction:
IEEE TMI 37(6), 2018 
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Categories of Deep Learning 
Used in CT Image Formation so Far

• Replacement of missing data
– LowRes → HighRes nice images

– SparseView → FullView nice images

– LowDose → HighDose nice images

– LimitedAngle → FullAngle nice images

– … 

• Replacement of lengthy computations
– Reconstruction (learn denoisers, learn regularizers, learn iterations, …)

– Scatter estimation

– Dose estimation

– …

• Other
– Material decomposition

– Pseudo CT from MR

– Motion artifact recognition

– 3D DSA from a contrast scan

– Tomosynthesis

– …
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Fully Connected Neural Network

• Each layer fully connects to previous layer

• Difficult to train (many parameters in W and b)

• Spatial relations not necessarily preserved

Hidden Hidden Output Hidden Input 
e.g. 512×512×3 pixels
e.g.

e.g. 1 label
e.g. Copenhagen

Output:Input:
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Convolutional Neural Network (CNN)

• Replace dense W in                                    by a sparse 
matrix W with sparsity being of convolutional type.

• CNNs consist (mainly) of convolutional layers.

• Convolutional layers are not fully connected.

• Convolutional layers are connected by small, say 
3×3, convolution kernels whose entries need to be 
found by training.

• CNNs preserve spatial relations to some extent.

G kernels 
3×3×F

Src
512×512×F

Dst
512×512×G

Attention: No convolution in depth direction! 
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U-Net

3 x 3 Convolution, ReLU

2 x 2 Max. Pooling

2 x 2 Upsampling
Depth Concatenate

1 x 1 Convolution, ReLU

Input:

Output:

384 × 256 × 4

12 × 8 × 480

24 × 16 × 320

48 × 32 × 160

96 × 64 × 80

192 × 128 × 40

6 × 4 × 960

Concatenative skip connection
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Part 1:

Replacement of Missing Data
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Limited Angle Example

Image Prediction for Limited-Angle Tomography via Deep Learning with Convolutional Neural Network. 
Hanming Zhang, Liang Li, Kai Qiao, Linyuan Wang, Bin Yan, Lei Li, Guoen Hu. arXiv 2016.

GT FBP (150°) CNN
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MAR Example
• Deep CNN-driven patch-based combination of the 

advantages of several MAR methods trained on 
simulated artifacts

• followed by segmentation into tissue classes

• followed by forward projection of the CNN prior and 
replacement of metal areas of the original sinogram

• followed by reconstruction
Yanbo Zhang and Hengyong Yu. Convolutional Neural Network Based Metal Artifact Reduction in X-Ray

Computed Tomography. TMI 37(6):1370-1381, June 2018.



= input feature 1

= input feature 2 = input feature 3

= output

= proposed method
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MAR without Machine Learning: 
Frequency Split Normalized MAR1,2

Patient with bilateral hip prosthesis, Somatom Definition Flash, (C=40/W=500).

Uncorrected LIMAR FSNMAR

1E. Meyer, M. Kachelrieß. Normalized metal artifact reduction (NMAR) in computed tomography. Med. Phys. 37(10):5482-5493, Oct. 2010.   
2E. Meyer, M. Kachelrieß. Frequency split metal artifact reduction (FSMAR) in CT. Med. Phys. 39(4):1904-1916, April 2012.
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Junyoung Park, Donghwi Hwang, Kyeong Yun Kim, Seung Kwan Kang, Yu Kyeong Kim and Jae Sung Lee. Computed 
tomography super-resolution using deep convolutional neural network. Phys. Med. Biol. 63: 145011, 2018

Resolution Improvement Example
• 2D U-net to converts 5 mm thick images into 1 mm ones.

• E.g. to “replace a scanning protocol for a 1 mm slice with 
a 5 mm protocol”. 5 mm image 1 mm GTRL deconv. U-net
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Sparse View Reconstruction Example

Yo Seob Han, Jaejun Yoo and Jong Chul Ye. Deep Residual Learning for Compressed Sensing CT 
Reconstruction via Persistent Homology Analysis. ArXiv 2016.
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Very 
impressive, 

but…

Very 
impressive, 

but…

Very 
impressive, 

but…



29

Sparse CT Recon with 
Data Consistency 
Layers (DCLs)

A. Kofler, M. Kachelrieß, et al. A U-Nets Cascade for Sparse View Computed Tomography, MICCAI 2018

GT

32 view FBP

U-Net only (1 DCL)

2 iterations

3 iterations

4 iterations
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Noise Removal Example 1

• 3-Layer CNN uses low dose and corresponding 
normal dose image patches for training

Normal dose Low dose ASD-POCS

KSVD BM3D 3-Layer CNN

Hu Chen, Yi Zhan, Weihua Zhang, Peixi Liao, Ke Li, Jiliu Zhou, and Ge Wang. Low-dose CT via convolutional 
neural network. Biomedical Optics Express 8(2):278381, February 2017.
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Noise Removal Example 2

• Architecture based on state-of-the art 
networks for image classification (ResNet).

• 32 conv layers with skip connections

• About 2 million tunable parameters in total

• Input is arbitrarily-size stack of images, 
with a fixed number of adjacent slices in 
the channel/feature dimension.

Input:
low-dose

CT images

Output:
denoised 

CT images

Full-dose 
reference

MSE
loss function

⊝Noise
subtraction

Skip 
connection

Residual Block

Predicted
noise

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose 
CT Images Using a Deep Convolutional Neural Network. Proceedings of the CT-Meeting 2018.



32

Low dose images (1/4 of full dose)

Noise Removal Example 2

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose 
CT Images Using a Deep Convolutional Neural Network. Proceedings of the CT-Meeting 2018.
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Denoised low dose

Noise Removal Example 2

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose 
CT Images Using a Deep Convolutional Neural Network. Proceedings of the CT-Meeting 2018.
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Full dose

Noise Removal Example 2

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose 
CT Images Using a Deep Convolutional Neural Network. Proceedings of the CT-Meeting 2018.
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Denoised full dose

Noise Removal Example 2

Andrew D. Missert, Shuai Leng, Lifeng Yu, and Cynthia H. McCollough. Noise Subtraction for Low-Dose 
CT Images Using a Deep Convolutional Neural Network. Proceedings of the CT-Meeting 2018.
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Part 2: 

Replacement of Lengthy Computations
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Scatter

• X-ray scatter is a major cause of image quality 
degradation in CT and CBCT.

• Appropriate scatter correction is crucial to maintain 
the diagnostic value of the CT examination.

+

CT image

scatter

Primary intensity

CT reconstruction

CT reconstruction

C = 0 HU, W = 800 HU
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Scatter Correction

-

Measured intensity Scatter estimate
Anti-scatter grid

Collimator

Scatter suppression

• Anti-scatter grids

• Collimators

• …

Scatter estimation

• Monte Carlo simulation

• Kernel-based approaches

• Boltzmann transport

• Primary modulation

• Beam blockers

• …
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• Simulation of photon trajectories according to 
physical interaction probabilities.

• Simulating a large number of photon trajectories well 
approximates the actual scatter distribution.

Monte Carlo Scatter Estimation

Scatter distribution of an 
incident needle beam

Complete scatter 
distribution



43

Deep Scatter Estimation (DSE)

Train a deep convolutional neural network (CNN) to 
estimate scatter using a function of the acquired 
projection data as input.

Scatter estimate Input:

Convolutional neural network

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE): Accurate real-time scatter estimation for
X-ray CT using a deep convolutional neural network. Journal of Nondestructive Evaluation 37:57, July 2018.



44

Deep Scatter Estimation
Network architecture & scatter estimation framework

3 x 3 Convolution, ReLU

2 x 2 Max. Pooling

2 x 2 Upsampling
Depth Concatenate

1 x 1 Convolution, ReLU

Input:

Output:
scatter estimate 384 × 256 × 4

12 × 8 × 480

24 × 16 × 320

48 × 32 × 160

96 × 64 × 80

192 × 128 × 40

6 × 4 × 960Projection data

Downsampling
and application 

of operator

Upsampling
to original 

size

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE): Accurate real-time scatter estimation for
X-ray CT using a deep convolutional neural network. Journal of Nondestructive Evaluation 37:57, July 2018.
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+ +

Primary intensity Poisson noiseMC scatter simulationCBCT Setup

Input

Desired output

Training the DSE Network

• Simulation of 12000 flat detector projection 
using data of different heads.

• Simulate different tube voltages.
• Splitting into 80% training and 20% 

validation data.
• Optimize weights of the CNN to reproduce 

the Monte Carlo scatter estimates:

• Training on a GeForce GTX 1080 for
80 epochs.

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE): Accurate real-time scatter estimation for
X-ray CT using a deep convolutional neural network. Journal of Nondestructive Evaluation 37:57, July 2018.
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Results on Simulated Projection Data
Scatter ground 

truth (GT)
Primary 
intensity

(Kernel – GT) 
/ GT 

(Hybrid - GT)
/ GT

(DSE – GT)    
/ GT

View #1

View #2

View #3

View #4

View #5

C = 0 %, W = 50 %C = 0 %, W = 50 %C = 0 %, W = 50 %C = 0.5, W = 1.0 C = 0.04, W = 0.04

14.1%
mean 

absolute
percentage 

error
over
all

projections

7.2%
mean 

absolute 
percentage

error
over
all

projections

1.2%
mean 

absolute
percentage 

error
over
all

projections

DSE trained to estimate scatter from primary plus scatter: High accuracy
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Reconstructions of Simulated Data

No Correction
Kernel-Based 

Scatter Estimation

Hybrid Scatter 

Estimation

Deep Scatter 

Estimation
Ground Truth

D
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C = 0 HU, W = 1000 HU

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE): Accurate real-time scatter estimation for
X-ray CT using a deep convolutional neural network. Journal of Nondestructive Evaluation 37:57, July 2018.
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• Measurement of a head 
phantom at our in-house 
table-top CT.

• Slit scan measurement 
serves as ground truth.

X-ray source

Detector

Measurement to be corrected

Testing of the DSE Network for 
Measured Data (120 kV)

X-ray source

Detector

Ground truth: slit scan

Collimator

DKFZ table-top CT

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE): Accurate real-time scatter estimation for
X-ray CT using a deep convolutional neural network. Journal of Nondestructive Evaluation 37:57, July 2018.
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Reconstructions of Measured Data

No Correction
Kernel-Based 

Scatter Estimation

Hybrid Scatter 

Estimation

Deep Scatter 

Estimation
Slit Scan
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C = 0 HU, W = 1000 HU

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE): Accurate real-time scatter estimation for
X-ray CT using a deep convolutional neural network. Journal of Nondestructive Evaluation 37:57, July 2018.
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Truncated DSE

FOM

FOM

GT uncorrected MC-corrected DSE

40 × 40 cm2 

flat detector

40 × 40 cm2 

flat detector

To learn why MC fails at truncated data and what significant efforts are necessary to cope with that situation see [Kachelrieß et al. 
Effect of detruncation on the accuracy of MC-based scatter estimation in truncated CBCT. Med. Phys. 45(8):3574-3590, August 2018].

J. Maier, M. Kachelrieß et al. Deep scatter estimation (DSE) for truncated cone-beam CT (CBCT). RSNA 2018.

A simple detruncation was applied to the rawdata before reconstruction. Images were clipped to the FOM before display. C = -200 HU, W = 1000 HU.
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Conclusions on DSE

• DSE needs about 20 ms per projection. It is a fast and 
accurate alternative to Monte Carlo (MC) simulations.

• DSE outperforms kernel-based approaches in terms 
of accuracy and speed.

• Interesting observations
– DSE can estimate scatter from a single (!) x-ray image. 

– DSE can accurately estimate scatter from a primary+scatter image.

– DSE cannot accurately estimate scatter from a primary only image.

– DSE may thus outperform MC even though DSE is trained with MC.

• DSE is not restricted to reproducing MC scatter 
estimates. 

• DSE can rather be trained with any other scatter 
estimate, including those based on measurements.
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DSE for PET

Bed position f55d49, NMAE: 1.09 %, NMSE: 0.00 %
252 projection angles, 25 fps. DSE filtered in angular direction (Gaussian, FWHM 3.5 projections) for display

Input feature 1: p = ln ACF Input feature 2: 1/p Input feature 3: Prompts

GT scatter (e.g. Monte Carlo) DSE scatter estimation

DSE - GT (DSE-GT)/GT where GT≥0.001

Y. Berker, J. Maier, and M. Kachelrieß. Deep scatter estimation in PET: 
Fast scatter correction using a convolutional neural network. Proc. IEEE MIC 2018.
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DSE for PET

Bed position f55d49, NMAE: 1.09 %, NMSE: 0.00 %
Reconstruction, transaxial (a.u.)

DSE GT

DSE-GT (DSE-GT)/GT

Y. Berker, J. Maier, and M. Kachelrieß. Deep scatter estimation in PET: 
Fast scatter correction using a convolutional neural network. Proc. IEEE MIC 2018.
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Deep Dose Estimation (DDE)

C = 0 %, W = 30 %

DDE prediction Relative ErrorMC ground truth

Photo effect doseCT image

J. Maier, E. Eulig, S. Dorn, S. Sawall, and M. Kachelrieß. Real-time patient-specific CT dose estimation
using a deep convolutional neural network. Proc. IEEE MIC 2018.

MC DDE

48
slices 1 h 0.25 s

whole 
body 20 h 5 s

MC uses 16 CPU kernels
DDE uses one Nvidia Quadro P600 GPU

DDE training took 30 h for 200 epochs, 
720 samples, 48 slices per sample
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Conclusions on 
Deep Learning for CT Image Formation

• Machine learning will play a significant role in CT 
image formation.

• High potential for
– Artifact correction

– Noise and dose reduction

– Real-time dose assessment (also for RT)

– … 

• Care has to be taken
– Underdetermined acquisition, e.g. sparse view or limited angle CT, 

require the net to make up information!

– Nice looking images do not neccesarily represent the ground truth.

– Data consistency layers may ensure that the information that is 
made up is consistent with the measured data.

– …
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Thank You!

This presentation will soon be available at www.dkfz.de/ct.

Job opportunities through DKFZ’s international PhD or 
Postdoctoral Fellowship programs (marc.kachelriess@dkfz.de). 

Parts of the reconstruction software were provided by 
RayConStruct® GmbH, Nürnberg, Germany.


