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Introduction

C = 80 HU, W = 200 HU

In low dose CTP, TACs SNR is very poor.
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Introduction
CT Images
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In this study we aim at detecting the functional similarity between
the voxels, independently from the maps.
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Time-intensity profile similarity - TIPS1,2:

Voxel index

Temporal index

Unfiltered image

1Mendrik et al. “TIPS bilateral noise reduction in 4D CT perfusion scans produces high-quality cerebral blood flow maps.” , Phys Med Biol 56, (2011).
2Li et al. “A robust noise reduction technique for time resolved CT.”, Med Phys 43, (2016).

Homogeneous non-enhancing ROI
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TIPS limitations for low dose CT perfusion:
• The sum of squared differences between the TACs

mainly depends on their baseline* difference.
• If baseline is removed, the sum of squared differences is

dominated by the temporal noise.

Introduction
other methods - TIPS

CT value / HU

t /s

* the baseline is defined as the temporal average of all time points prior to contrast media arrival in
the arteries.



TIPS similarity between:
- Two voxels with the identical TAC
- Two voxels with different TACs
After baseline subtraction and for different noise levels
simulations:
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To visualize the TIPS similarity results, we perform a k-means
clustering using the TIPS similarity formula as a distance
measure:
- The k-means centroids are intialized with K=5 random voxels.
- We calculate the sum of squared differences between each voxel and each

centroid, and assign each voxel to the cluster with the lowest distance:

- The centroids are updated as the average of all voxels belonging to its
cluster.

- Steps 2 and 3 are repeated until 99.99% of the voxels do not change cluster
anymore.

Introduction
TIPS clustering



Introduction
TIPS clustering
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Material and Methods
SVD

We subtract the baseline from the dataset, and re-arrange
all the temporal volumes as columns of a matrix D.
Then we perform the singular value decomposition (SVD) .

-0.2

0

0.2

0.4

-0.5

0

0.5

-0.5

0

0.5

v1(t)

t

v2(t)

t

v3(t)

t

4Gao H. et al “Robust principal component analysis-based four-dimensional computed tomography.“, Phys Med Biol 56, (2011).
5Gou S. et al “CT image sequence restoration based on sparse and low-rank decomposition.“, PLoS One 8, (2013).

C = 0, W = 0.01



We smooth the singular vectors with a guided bilateral
filter, where the guiding image is the temporal average
image.

Material and Methods
edge-preserving smoothing

C = 0, W = 0.01



Material and Methods
clustering

We used the same k-means clustering algorithm as before,
but now it is performed in the singular vectors domain,
rather than in temporal domain.



Results
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Results
Neuro 1
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Outlook
preliminary results

These distance maps could be used to
guide a smoothing of the dataset
before the maps calculation.

Where i is the cluster the voxel r
belongs to.

is the standard deviation of the
distances from the ith centroid of all
voxels belonging to the cluster i.
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Phantom simulation with ischemic region. Results on blood
volume maps: our approach (on the right side) is better
able to preserve original shape and signal of the ischemic
region.
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Conclusions
- The proposed method correctly separated voxels with

different functional features.
- It proved to be more robust than the TIPS method for

functional similarity measurements (independently from the
perfusion model) in dynamic CTP, and robust to spatial and
temporal noise.

- Computational times are significantly lower than in the
TIPS method, due to the dimensionality reduction.

- Potential use of such algorithm, in low dose dynamic CT
perfusion, could be:

- to efficiently guide a dataset smoothing before maps calculation, or a smoothing of
the maps themselves,

- to provide more information when the maps are too noisy or blurred, which can be
used both as a second reader, or to help the radiologists in lesion detection and
segmentation.



Thank You!

This presentation will soon be available at www.dkfz.de/ct
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