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Introduction
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In this study we aim at detecting the functional similarity between
the voxels, independently from the maps.
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Introduction
other methods - TIPS

Time-intensity profile similarity - TIPS2:
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Introduction
other methods - TIPS

TIPS limitations for low dose CT perfusion:

 The sum of squared differences between the TACs
mainly depends on their baseline* difference.

 If baseline is removed, the sum of squared differences is
dominated by the temporal noise.
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* the baseline is defined as the temporal average of all time points prior to contrast media arrival in

the arteries.



Introduction
other methods - TIPS

TIPS similarity between:
- Two voxels with the identical TAC  s(GM;, GMz)
- Two voxels with different TACs s(GMy, TAR)

After baseline subtraction and for different noise levels
simulations:
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Introduction
TIPS clustering

To visualize the TIPS similarity results, we perform a k-means
clustering using the TIPS similarity formula as a distance
measure:

The k-means centroids are intialized with K=5 random voxels.

We calculate the sum of squared differences between each voxel and each
centroid, and assign each voxel to the cluster with the lowest distance:
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m(r) = arg m}jn di(r)

The centroids are updated as the average of all voxels belonging to its
cluster.

Steps 2 and 3 are repeated until 99.99% of the voxels do not change cluster
anymore.
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Introduction
TIPS clustering

BF map
after dataset TIPS TIPS clustering result
Temp. average smoothing clustering after baseline
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Material and Methods
SVD

We subtract the baseline from the dataset, and re-arrange
all the temporal volumes as columns of a matrix D.

Then we perform the singular value decomposition (SVD) .
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4Gao H. et al “Robust principal component analysis-based four-dimensional computed tomography.“, Phys Med Biol 56, (2011).
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Material and Methods

edge-preserving smoothing

We smooth the singular vectors with a guided bilateral
filter, where the guiding image Is the temporal average
Image.
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Material and Methods

clustering

We used the same k-means clustering algorithm as before,
but now it is performed Iin the singular vectors domain,
rather than in temporal domain.

=l

m(r) = arg mkin di(r)




Results
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Results
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The fifth cluster goups the vessels and d;(r) is not displayed here.
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Outlook

preliminary results

These distance maps could be used to After smoothing  After smoothing
the dataset with the dataset with

guide a smoothing of the dataset Gaussian distance maps
before the maps calculation. mLimin 100 mL)] - [miJnin 100 mU)
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Where 1 Is the cluster the voxel r
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o; IS the standard deviation of the
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Phantom Study

preliminary results

Phantom simulation with ischemic region. Results on blood
volume maps: our approach (on the right side) is better
able to preserve original shape and signal of the ischemic
region.
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Conclusions

- The proposed method correctly separated voxels with
different functional features.

- It proved to be more robust than the TIPS method for
functional similarity measurements (independently from the
perfusion model) in dynamic CTP, and robust to spatial and
temporal noise.

- Computational times are significantly lower than in the
TIPS method, due to the dimensionality reduction.

- Potential use of such algorithm, in low dose dynamic CT
perfusion, could be:

- to efficiently guide a dataset smoothing before maps calculation, or a smoothing of
the maps themselves,

- to provide more information when the maps are too noisy or blurred, which can be
used both as a second reader, or to help the radiologists in lesion detection and
segmentation.
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Thank You!

This presentation will soon be available at www.dkfz.de/ct
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