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INTRODUCTION: ARBITRARY
SCAN TRAJECTORIES
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Introduction
Several modern CT systems allow scan trajectories
beyond the standard circle trajectories.

Vision RFD 3D mobile C-arm system, Ziehm Imaging GmbH, Nürnberg, Germany

C-arm Rotate+Shift scan:



Introduction

Patient Alignment Imaging Ring (PAIR), medPhoton GmbH, Salzburg, Austria

Independent source and detector movement with virtual isocenter:

Several modern CT systems allow scan trajectories
beyond the standard circle trajectories.



Introduction

Other examples:

Several modern CT systems allow scan trajectories
beyond the standard circle trajectories.

Artis Zeego

Siemens Healthcare,

Forchheim, Germany

TrueBeam

Varian Medical Systems,

Palo Alto, CA, USA



Purpose

• To allow for an analytical image reconstruction,
the rawdata must be pre-weighted to account for
the 180°redundencies of the measured rays.

• A dedicated pre-weight must be derived for each
individual scan trajectory (e.g. Parker weight [1]
for a circular short scan).

• Therefore, the implementation of an arbitrary scan
trajectory is very time-consuming and, e.g., patient 
specific trajectories [2] cannot be easily realized.

• Consequently, as of today, there is no commercial
system realizing arbitrary trajectories.



Aim

• To develop a general weighting scheme which
can be used for pre-weighting of rawdata
from any arbitrary scan trajectory.

• In this work we restrict ourselves to in-plane 
trajectories which provide 180°complete rawdata.



GENERAL WEIGHTING
SCHEME

Part 2:



Virtual Parallel Geometry

• A ray in parallel geometry is defined by the parameters

It runs through all points with

• Identical rays:



Short Scan

Source

In the following, we consider
a short scan, i.e.

measured rays

in parallel sinogram



R = 2

R = 0

• For each ray           we count

the number of fan projections

covering this ray.

• This number of fan projections

is called the redundancy

of this ray.

• The list of fan projections

is mapped to a list of virtual

half rotations such that

adjacent rays in the extended

parallel sinogram are covered

by adjacent fan projections.

Step 1: Counting Redundancies



Step 2: Weights in Parallel Geometry

R = 2

R = 0

• Now we look for appropriate

weights

• To account correctly for the

redundancies, the weights

must fulfill the constraint



Step 2: Weights in Parallel Geometry

w = 1/2

w = 0

• Now we look for appropriate

weights

• To account correctly for the

redundancies, the weights

must fulfill the constraint

• An obvious choice would be



Step 2: Weights in Parallel Geometry

w = 1/2

w = 0

• However, this obvious choice 

results in non-continuous weights 

which produce unwanted streak 

artifacts in the final image due to 

the discreteness of the sampling:



Step 2: Weights in Parallel Geometry

w = 0

• Therefore, we must smooth the

weights under the constraint



Step 3: Smoothing Weights

We smooth the weights by minimizing the following cost function:

with

The cost function will be minimized by a gradient descent approach

with respect to the following variables:

• All weights               with redundancy

• The Lagrange multipliers          which enforce the constraint.



w = 0

Step 3: Smoothing Weights

w = 1/2

w = 0



SIMULATION STUDIES
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Simulation Studies

• We simulated example trajectories of a Ziehm Vision 
RFD 3D mobile C-arm system and a Patient Alignment 
Imaging Ring (PAIR) system.

– A C-arm large volume scan [3] which is realized as
two rotate+shift scans [4] with a virtual shifted detector.

– A PAIR scan which realizes a patient-specific field of measurement.

• The trajectories are not yet actually implemented
in the respective devices but demonstrate the 
potentials of these systems.

• As a reference, we simulated a standard short scan
in the PAIR geometry with an artificial large detector.



Simulation Studies

• X-ray photon noise was added to the simulated 
rawdata. All scans were simulated at the same total 
patient dose.

• The rawdata were pre-weighted using the proposed
general weighting scheme.

• Finally, the pre-weighted rawdata were reconstructed
using a standard Feldkamp-Davis-Kress (FDK)
algorithm [5].



Simulated Geometries

Field of measurement (FOM)

Virtual (C-arm) or physical (PAIR) isocenter, resp.

Reference:
Standard short scan

PAIR:
Patient specific FOM

C-arm:
Large volume scan



General Weights
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Channels

Reference:
Standard short scan

PAIR:
Patient specific FOM

C-arm:
Large volume scan



Reconstructions

Difference:
C-arm minus reference

(C/W) = (0 HU / 500 HU) (C/W) = (0 HU / 100 HU)

Reference:
Standard short scan

C-arm:
Large volume scan

Remaining differences are due 
to the need to detruncate the
C-arm data.



Reconstructions

Difference:
PAIR minus reference

(C/W) = (0 HU / 500 HU) (C/W) = (0 HU / 100 HU)

Reference:
Standard short scan

PAIR:
Patient specific FOM



RECONSTRUCTIONS FROM
MEASURED DATA
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Reconstructions from
Measured data

• To validate our approach, we reconstructed actually
measured data from a Ziehm Vision RFD 3D mobile
C-arm system and a Patient Alignment Imaging Ring 
(PAIR) system.

– A C-arm rotate+shift scan [4] which allows for 180°complete data
despite of a limited rotational scan range of 165°(see slide 3).

– A PAIR scan with a virtual isocenter (see slide 4).



Ziehm C-arm System

Rotate+shift scan [4]165°scan without shift

Limited angle artifacts 180°complete scan



PAIR System

Standard reconstruction

Difference:
Generalized weights

minus standard

(C/W) = (0 HU / 1000 HU) (C/W) = (0 HU / 250 HU)

Generalized weights
reconstruction with

increased FOM



Conclusions

• We developed a general weighting scheme for
arbitrary in-plane 180°complete scan trajectories.

• The general weights correctly account for 180°
redundencies of all measured rays and allow for
a standard analytical Feldkamp-Davis-Kress (FDK) 
reconstruction [5] of the pre-weighted rawdata.

• This significantly eases the implementation of new
scan trajectories and allows for run-time, e.g.
patient-specific trajectories [2].
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Thank You!

This presentation will soon be available at www.dkfz.de/ct.
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