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Introduction 

Motivation 

• Quantitative PET imaging requires accurate 
attenuation correction (AC). 

• Standard MR-based attenuation correction  
(MRAC) neglects bone attenuation. 

  

 

 

 

 

• Neglecting bone yields activity 
underestimation values of up to 30%1. 

 

[1] Samarin et al., “PET/MR imaging of bone lesions - implications for PET quantification from imperfect attenuation correction,” 
Eur. J. Nucl. Med. Mol. Imaging, 39(7), 1154–60, 2012. 

MR images obtained using two-point Dixon VIBE sequence 

Attenuation Map 
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Introduction 

Aim 

• Improve AC for non-TOF PET/MR by simultaneous 
reconstruction of attenuation and activity 
distributions from PET emission data using MR prior 
information. 

 

• The presented algorithm is an extension of the 
maximum-likelihood reconstruction of attenuation 
and activity (MLAA)1 for non-TOF PET/MR, called MR-
MLAA. 

 

[1] Nuyts et al., “Simultaneous maximum a posteriori reconstruction of attenuation and activity distributions from emission 
sinograms,” IEEE Trans. Med. Imaging 18(5), 393–403 (1999). 
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Algorithm 

Workflow 

Activity 
distribution 

Standard  
MR-based AC 

Attenuation map 

PET  
emission data MR image(s) 

Initial 
attenuation map 

Attenuation update 

Activity update  

iteration 

MR-MLAA 
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Algorithm 

Cost Function 

• Cost function C 

 

 

• Log-likelihood L 
 
 
          
    with 

 

• Smoothing prior LS 

• Intensity prior LI 
 

Activity 

Attenuation 

Measured projections 
along LOR j 

Intersection length of 
voxel i and LOR j 

System matrix 
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Algorithm 

Update Equations 

• Activity Update (AW-MLEM) 

 

 

• Attenuation Update1 

 
 
 
 
 
 
     

    with attenuation factor  

Relaxation parameter 

[1] Nuyts et al., “Iterative reconstruction for helical CT: a simulation study,” Phys. Med. Biol., 43(4), 729–737, 1998. 

LOR index 

Voxel index 

Attenuation 

Activity Iteration number 

Prior  

Intersection length of voxel i and LOR j 

System matrix 



7 

Algorithm 

Prior Information 

• Optimizing the cost function C(λ, μ) with both the 
activity and attenuation distribution unknown is an  
ill-conditioned problem. 

• Prior information can help to drive the algorithm 
towards a ‘desired’ solution. 

• Smoothing prior LS 

– Favors smooth attenuation map 

– Defined as logarithm of a Gibbs probability distribution 

• Intensity prior LI 
– Voxel-dependent Gaussian-like probability distribution of pre- 

defined attenuation coefficients (e.g., for soft tissue, air, bone) 

– Voxel-dependency is based on the MR information 
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Algorithm 

Intensity Prior I 

• Use the MR image to create a 
mask defining air/bone and 
soft tissue 

• Smooth mask 

• Define intensity prior LI as 
linear combination of air/bone 
intensity prior LAB and soft 
tissue intensity prior LST: 

 

 

MR Image 

Attenuation Mask 

Air 

Bone 

Bone 

Air 

Soft 
tissue 

Soft 
tissue 

Global weighting factors 

Voxel-dependent weighting factor, 
given by the attenuation mask 

LST 

LAB 
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Algorithm 

Intensity Prior II 

• Express the priors LAB and LST as a 
combination of Gaussian-like 
functions and choose S pre-defined 
attenuation coefficients for each 
prior. 
– Air/Bone:  

– Soft tissue:  

 

• Define the gradient of the logarithm 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Intersection points ts between neighboring Gaussians 
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Experiments 

Data 

• Use pair of co-registered 
MR/CT head patient data 

• Simulate 3D activity 
distribution: 
– Fat/Soft tissue: 5-10 kBq/mL 

– Air/bone:         0 kBq/mL 

– Lesions:       25 kBq/mL 

• Simulate 3D PET emission 
data accounting for 
– Poisson noise  

– attenuation 

• Use Siemens Biograph 
mMR Geometry 

CT  

Attenuation Activity 

Emission Data 

Total number 
of counts: 
~60×106 

MR (T1) 

Bilinear 
scaling 
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Experiments 

Reconstructions 

• AW-OSEM reconstructions using 
– the true attenuation for AC (ground truth) 

– standard MR-based AC (MRAC) 

– the final attenuation map from MR-MLAA for AC 

» Mask derived from MR image (standard) 

» Mask derived from attenuation image (idealized) 

• Reconstruction parameters: 
– Iterations: 3 

– Subsets: 21 

– Gaussian post-smoothing: FWHM = 5 mm 

• Quantitative Evaluation 
– Measure relative mean activity in ROIs 

corresponding to simulated lesions 

– Calculate activity difference to ground truth 
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Results 
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Results 

Attenuation and Activity (Slice A) 
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Results 

Attenuation and Activity (Slice A) 
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Results 

Attenuation and Activity (Slice A) 
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Results 

Attenuation and Activity (Slice A) 
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Conclusion 

• MR-MLAA significantly improves bone attenuation 
estimation compared to MRAC. 

• MR-MLAA improves PET quantification compared to 
MRAC, especially for regions close to bone tissue. 

• Challenges 
– Small air cavities (e.g., nasal sinuses) 

– Misclassification of air as bone or soft tissue leads to increased 
activity values 

– Thin bone structures 
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Outlook 

• Clinical data coming soon. 

• Potential improvements 
– Sophisticated segmentation technique to create attenuation mask 

from MR image(s) (e.g., based on UTE images) 

– Additional prior information from non attenuation-corrected (NAC) 
images 

– Time-of-flight (TOF) information 

• Adaption to whole-body PET/MR requires 
– additional tissue classes (e.g., fat) 

– proper handling of truncated MR data 
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Thank You! 

This presentation will soon be available at www.dkfz.de/ct. 

This work was supported by the Helmholtz International Graduate School for 
Cancer Research, Heidelberg, Germany. 

Parts of the reconstruction software RayConStruct-IR were provided by 
RayConStruct® GmbH, Nürnberg, Germany. 


