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Indirect Conversion (T8day) Direct Conversion (Kuture)

Gd,0,S CdTe
7.44 g/cm3 5.85 g/cm3

i.e. max O(40-103) cps i.e. max O(40-10°) cps

Requirements for CT: up to 10° x-ray photon counts per second per mm?2.
Hence, photon counting only achievable for direct converters.

dkfz.




Integrating vs. Photon Counting
Detector Technoloay

indirect conversion direct conversion
= pile up only = photon counting
= energy integrating = energy selective
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Energy Selective Detectors:
Improved Spectroscopy, Reduced Dose?

Ideally, bin spectra do not overlap, ...

Spectra as seen after having passed a 32 cm water layer. dkfz,




Energy Selective Detectors:
Improved Spectroscopy, Reduced Dose?

... realistically, however they do!

Spectra as seen after having passed a 32 cm water layer. dkfz,




Photon Events

* Detection process in the sensor
* Photoelectric effect (e.g. 80 keV)

Ideal case
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Photon Events

* Detection process in the sensor
« Compton scattering or K-fluorescence (e.g. 80 keV)

Energy dispersion due to
secondary photons

Threshold

CdTe
5.85 g/cm3




Photon Events

* Detection process in the sensor
* Photoelectric effect (e.g. 80 keV)

Ideal case
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Photon Events

* Detection process in the sensor

* Photoelectric effect (e.g. 30 keV), charge sharing

Energy dispersion due to
charge diffusion
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K-Edges: More than Dual Energy CT?
u(r, E) = f1(r)1(E) + f2(r)v2(E) + fa(r)hs (L) + ...

Element K-edge / keV
O (61%)
C (23%)
H (10%)
N (2.6%)
Ca (1.7%)
P (1.1%)
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120 kV water transmission curves (gray) given in relative units on a non-logarithmic ordinate. dkflo




Remarks

Photon counting is not necessarily energy-selective.

Energy-selective CT
— DECT
— E_hot)on-counting energy-selective detectors (i.e. at least two energy
ins
DECT
— DSCT
— Fast TVS
— Sandwich detector
— Split filter
— Two scans
DECT or two bin photon-counting energy-slective CT

can distinguish between more than two materials iff
additional assumptions are made.




Aims

 Decompose MECT data in image domain

« Make use of energy data redundancies
in multi energy CT

 Minimize noise in material images,
I.e. reduce patient dose




SIEMENS

This photon-counting whole-body CT prototype, installed at the Mayo Clinic,
is a DSCT system. However, it is restricted to run in single source mode.

Photo courtesy of Siemens Healthcare, Forchheim, Germany.




Motivation

« Without multiple high-Z contrast agents:

Clinically interesting case only M = 2:
— Water/soft tissue and bone/iodine
— Photoelectric effect and Compton scattering

Number energy bins B > number basis materials U
- Gain in degrees of freedom, how to use it?

Image-based method for this task

— Narrow energy bins, images show only very little beam hardening
— Linear image-based methods are fast.

Projection-based algorithms available
— Maximum likelihood approach (Roessl and Proksa, PMB 2007)
— EMEC + Dose Min. (MaaB, Sawall, Knaup, and KachelrieB, MIC 2011)




Algorithm Concept

* Linear image weighting Bin images f
— Material image g
— Weighting coefficients w
— Energy bin images f

mage g
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IRfs)

 Two subsequent steps:
— Material decomposition calibration

— Image noise minimization using the
K = B - M degrees of freedom




Material Decomposition Calibration

Water only

« Example for M = 2: water and iodine

N =2 calibration measurements
using ROls
* Determine weighting coefficients w
— Mx B coefficients, but MxN equations

Water calibration
(maps water ROI values to target values):

Water (and iodine shown as water)

Jw.1

W-Image\ (1\ [wwi...ww B
I-Image /  \0) \ wri...wrp
lodine calibration _
(maps iodine ROI values to target values): i1 lodine only

W-Image) _ (1\ _ (wwj...ww B\
[-Image /] \1) \ wii...wrp

Jw.B

fI;B
 This is the case studied
in the following simulations




Material Decomposition Calibration

* Problem will now be treated separately for each of
the the M basis materials, i.e. mis fixed

N 2 M calibration measurements to determine w:

gn = Dy frowy g=F-w
In general N # B, least squares approach:
w = argmin,, (F - w — g)*
Linear system for w:
F'F.w=F'qg

—— ——
B x B matrix, rank at most U Vector of dim. B

Singular value decomposition:

K
’UJ(Oék) — wWo + Zakwk , Varp e R
/ k=1 N\

Rank M solution Null space, dimension K=B- M




Image Noise Minimization

Exploit free parameters a, of the null space
w(ag) = wo + ), apwg

Noise minimization = maximizing CNR

Covariance matrix C of all bin images:

Coiy = =1 2perot(fo(P) — o) (o (p) — fi)

Error propagation:
Var g = w' (a) - C - w(oy,)
Minimize variance: HVar g
o B
Resulting linear system A - o = b with:

Ajk — Z Z wjbwkbebb/ and bj — — Z ijwab/Cbb/

b b b b




Simulations

Assess the proposed algorithm
Study a typical dual energy CT (DECT) application:

— Material decomposition into a water-equivalent virtual non-
contrast (VNC) image and an iodine material image

Comparison of:

— Dual energy technique, energy integrating (El) detectors
— Energy-selective photon counting (PC) detectors

Based on patient data set with low noise
— Averaged over 8 thin slices
— Separation into water and bone

— Forward projection to obtain material-specific sinograms for
polychromatic simulation




Simulations

Spectral response:
~.> ] Incident E = 70 keV
’ Energy bins placed
equidistantly from

> 0.1
= 0,08
: deal 20 keV to 140 keV

Realistic

40 50 60 70 80 90
Detected photon energy / keV

* Energy bin spectra for B = 4:

Ideal Realistic

40 60 80 100 120 140 20 40 60 80 100 120 140
Energy / keV

20
Energy / keV
dkfz.

[J. P. Schlomka, E. Roessl, R. Dorscheid, S. Dill, G. Martens, T. Istel, C. Baumer, C. Herrmann, R. Steadman, G. Zeitler, A. Livne
and R. Proksa, “Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography,”

Phys. Med. Biol. 53, 4031-4047, 2008.]




Simulations

 Dual source DECT as reference:
— 100 kV
— 140 kV + 0.4 mm Sn

100 120

140 kV Sn

C=0HU/W=700HU




Results — Ideal Model

DS 100 kV / Sn 140 kV PC 2 bins PC 4 bins

NN TN A7 R AR

\

»
N

For details regarding the material decomposition Water: C=0 HU/ W =400 HU
method see Faby et al., SPIE 2014. lodine: C=0 mg/mL/ W =6 mg/mL

PC 8 bins




Results — PC (Realistic Model)

DS 100 kV / Sn 140 kV PC 2 bins PC 4 bins PC 8 bins

LIRS, QNN WO ; AT X0 T T
AN NN e a7 , N

For details regarding the material decomposition Water: C=0 HU/ W =400 HU
method see Faby et al., SPIE 2014. lodine: C=0 mg/mL/ W =6 mg/mL
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Patient-Specific Weighting

« Specifically optimized coefficients yield better
results, especially for children.

140 mm . . . . .
VNC image noise |lodine image noise

Std Opt Std Opt

Patient | Bins

Simulation settings: 140 kV, realistic PC detector model

Small

p

0.0%

0.0%

0.0%

0.0%

Normal

0.0%

0.0%

-4.7%

-29.1%

-10.1%

-11.1%

0.0%

0.0%

(&~ (N ||~ (N ||~

dkfz.




Selected Methods

in chronological order and
in comparison to the initial method




Optimal “image-based” weighting for energy-resolved CT
Taly Gilat Schmidt®

Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin 53201

EM]w.-C-
CEwi o)

CNRcombincd - (6)

This paper considers how to combine the M energy-bin
images 1n order to maximize the CNR of the final image. In
the absence of noise, all of the weight would be given to the
energy bin with the highest contrast (generally the low en-
ergy bin). In practice, the data from the lowest energy bin are
generally noisiest because of the small number of detected
photons.

The derivative of the CNR of the combined image with
respect to the weight of the nth eneroy bin w,, 1s

(erNRcomhincd C 2.' l“ - W, 0 2 “'iCi
(?H.ﬂ (El ]‘t )

(7)

A solution to this optimization problem is to weight each
image proportionally to CNVR. For example, the weight of
the nth energy-bin image is

—- (8)
2

n

T. Schmidt, “Optimal “image-based” weighting for energy-resolved CT,” Med. Phys. 39, 3018-3027, (2009). dkfz.



Optimal “image-based” weighting for energy-resolved CT
Taly Gilat Schmidt®

Department of Biomedical Engineering, Marquette University, Milwaukee, Wisconsin 53201
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T. Schmidt, “Optimal “image-based” weighting for energy-resolved CT,” Med. Phys. 39, 3018-3027, (2009). dkfz.



Comparison to Initial Method

 No material decomposition, only CNR optimization

« Comparable to the initial method’s noise
minimization step (without the calibration)

Important difference to the initial method’s noise
minimization:

The weighting coefficients here do not take the
covariance into account, but only the variance of the
energy-resolved images. This might be sufficient for
energy bin images, but surely not for threshold
Images.




Multi-energy performance of a research prototype CT
scanner with small-pixel counting detector

S. Kappler®y A. Henning?, B. Krauss®, F. Schoeck?,
K. Stierstorfer®, T. Weidinger®, and T". Flohr”

“Siemens Healthcare, Siemensstr. 1, 91301 Forchheim, Germany.

In our approach we request the following relation between the spectral images I, and the material decomposed

images J,,:

M
Cmn
(‘_ ) Jm (1)
m=1 -m0

-

I=U-J (2)

In the case M = N, where U is a square matrix, the material images can be computed directly by inversion of
the matrix U:
J=U"1.1T (3)
For M < N thess¥5tem of equalttmgjs over-determined. We chose the following approach to solve this problem.
We chooggM spectral images in all poNible combinations out of the N recorded data sets.
Thi§ vields K = ( ) sets \gop T* (with k = 1...K) and decomposes the M x N matrix U into K
M matrices U*. From eachff these matrices the corresponding material images J* can be computed
by matrix in™wgj
. -1
Je= (U . IF (4)

This results in K intermediate images for each material m. These images are fused to yield the final material
images:

K K
=Y T = 3 - 7)1 ®)
e—1 =1

The weights w;. are constant and required to fulfill the boundary condition )}, wi = 1 in order to preserve the
Hounsfield scale. The values of the w;. are determined by parameter optimization that minimizes the sum of
noise variances in the final material images J,, (measured in a representative phantom, e.g. a water phantom
with 20 em diameter).

S. Kappler, A. Henning, B. Krauss, F. Schoeck, K. Stierstorfer, T. Weidinger, and T. Flohr “Multi-energy performance
of a research prototype CT scanner with small-pixel counting detector,” Proc. SPIE Medical Imaging, 866800 (2013). dkfz.



Multi-energy performance of a research prototype CT
scanner with small-pixel counting detector

S. Kappler®y A. Henning?, B. Krauss®, F. Schoeck?,
K. Stierstorfer®, T. Weidinger®, and T". Flohr”

“Siemens Healthcare, Siemensstr. 1. 91301 Forchheim, Germany.

M = 3 material images calculated from B = 4 thresholds

Figure 3. Material decomposed images for calcium (a), iodine (b), and gadolinium (c) created from counting CT data at
140 kVp/100 mA with counter thresholds at 20/35/50/65 keV. The images are displayed in a CT-value window of C' =0
and W = 1200 HU.

S. Kappler, A. Henning, B. Krauss, F. Schoeck, K. Stierstorfer, T. Weidinger, and T. Flohr “Multi-energy performance
of a research prototype CT scanner with small-pixel counting detector,” Proc. SPIE Medical Imaging, 866800 (2013). dkfz.



Comparison to Initial Method

Comparable to the initial method but more expensive since a lot
of material images for the different threshold combinations
have to be reconstructed and subsequently weighted to get the
optimal result.

The initial method directly finds the optimal weighting
coefficients and reconstructs the optimal material image.

The results of this method should be the same as for the initial
method method if the weighting coefficients are chosen
optimally, taking the covariance into account.

Both methods can apply patient specific weighting, although
Kappler et al. use a water phantom to determine the weighting
coefficients.

Kappler et al. work with threshold images, the initial method
works with bin images, the results should be the same if the
covariance is correctly taken into account.




CT calibration and dose minimization in image-based
material decomposition with energy-selective detectors
b

Sebastian Faby?, Stefan Kuchenbecker®“, David Simons®, Heinz-Peter Schlemmer?,
Michael Lell¢, and Marc Kachelriefi*-4

“Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ),
Im Neuenheimer Feld 280, 69120 Heidelberg, Germany;
’Division of Radiology, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280,

69120 Heidelberg, Germany;

“Department of Radiology, University of Erlangen-Niirnberg, Maximiliansplatz 1,
91054 Erlangen, Germany;

dInstitute of Medical Physics, University of Erlangen-Niirnberg, Henkestrafie 91,

91052 Erlangen, Germany

ABSTRACT

Possible advantages of energy-selective photon counting detectors compared to dual energy CT shall be evaluated
in the case of a typical dual energy application: Image-based material decomposition into an iodine and a water
material image. Apart from a possibly smaller spectral overlap between the low and the high energy information,
a photon counting detector will probably offer more than the two necessary energy bins. In this case additional
degrees of freedom are gained that allow minimizing the noise in the material images. We propose an image-based

This is the initial method.

dkfz.



lterative image-domain decomposition for dual-energy CT

Tianye Niu, Xue Dong, Michael Petrongolo, and Lei Zhu?
Nuclear and Radiological Engineering and Medical Physics Programs, The George W. Woodruff School
of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332

(:U-H) . (MIH Hzﬁ)(-\‘l) (1)
ML HiL ML x2)’
where the subscript H (L) indicates the high (low) energy

spectrum, and the subscripts 1 and 2 represent the two mate-
rial bases. In Eq. (1), j¢;; is the linear attenuation coefficient of

1% =diag(var(1_}?1).. . le(m) le(l_l_,rj) Cvar(iiLy)).

(11)

In Eq. (11), m and m are the statistical noise of pixel k in
the high-energy and low-energy CT images. respectively. In
the derivation of Eq. (10), we assume that the noise is inde-
pendent on the CT images from two separate scans. Inserting
Eq. (10) into Eq. (9), we simplity the framework of iterative
decomposition as

min F(¥)= (AT = Z) V(AR =) +2- R(T).
(12)

T. Niu, X. Dong, M. Petrongolo, and L. Zhu, “Iterative image-domain decomposition for dual-energy CT,” Med. Phys.

41, 041901 (2014).

boundary sharpness. In this work, we choose the quadratic
smoothness penalty function that penalizes the square sum of
the differences between one pixel and its nearest horizontal
and vertical neighbors.?! The penalty function is defined as

1 )
ROX) =) > enlx(i) = x(k))’, (13)

i keN;

where N; is the set of the four neighbors of the ith pixel in the
image. e¢jx is the edge-detection weight, which is a small value
if either 7 or k is the index of an edge pixel in the image and
one otherwise.?! In this work, we set the weight to be 0.1 in

dkfz.



lterative image-domain decomposition for dual-energy CT

Tianye Niu, Xue Dong, Michael Petrongolo, and Lei Zhu?
Nuclear and Radiological Engineering and Medical Physics Programs, The George W. Woodruff School
of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332

Dual energy results, B=2 and M= 2

Iodlne. o Teflon
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T. Niu, X. Dong, M. Petrongolo, and L. Zhu, “lterative image-domain decomposition for dual-energy CT,” Med. Phys.
31041301 (204) dkfz.




Comparison to Initial Method

Iterative material decomposition with a
decomposition matrix approach plus edge-
preserving regularization on the material images

Independent treatment of the two material images

B = M, i.e. no considerations regarding more bins
than materials

Only for DECT




Spectral diffusion: an algorithm for robust
material decomposition of spectral CT data

Darin P Clark and Cristian T Badea

Center for In Vivo Microscopy. Box 3302, Duke University Medical Center, Durham,
NC 27710, USA

Post-reconstruction material decomposition solves the following least-squares optimization
problem:
arg min | 2
c="EM ) c_px|3. (1)
Cc 2
Given the input spectral CT data, X, the objective is to find the material decomposition,
C. In the case where the number of CT data sets matches the number of materials, D and D"
perform material decomposition (spectral data, X, to material maps, C: equation (2)) and syn-
thesis (material maps to spectral data: equation (3)) using a sensitivity matrix, B:

-1
big1 baukl DcaEn

YEl
DX=B"'X=|big2 baup2 bcir [1'52] =i

XE3
bigs bavrs DPcags =

bier bavkr bcagn [T ¢
D'C=BC=|bip baug bcar [(m]:X:DTDX
bres baugs bcags | LEGd

The objective of spectral diffusion is summarized by the following optimization problem: (BTV. (Farsiu er al 2004)). As the name suggests. BTV is related to the previously discussed
bilateral filtration (BF) weights in the following way:
X= “r‘v’;“"%ux— Y3+, (X)+p, T (DX). (18)

R(x,y)=exp i

(x,3) = (KO ., ) ) W(y) X (x,y) )?*
_(f) = (K. fln ) ey DL G |
2m-o-

Given the input data, Y. the objective is to find a denoised version of the data, X, which
best minimizes the cost specified by I'(.) for both the data and the material decomposition of f . o . L
the data, DX, while maintaining data fidelity. The relative contribution of each term is con- PerlX)= Z.\:l DHIRG FIWGIXE) |
trolled by the regularization parameters ¢ and u,. A popular choice for I' when working with 2';_:1 D(y) R (x,y)

‘ (21)
1

D. P. Clark, and C. T. Badea, “Spectral diffusion: an algorithm for robust material decomposition of spectral CT data,”
PMB 59(21), 6445-6467 (2014). dk e



Spectral diffusion: an algorithm for robust
material decomposition of spectral CT data

Darin P Clark and Cristian T Badea

Center for In Vivo Microscopy, Box 3302, Duke University Medical Center, Durham,
NC 27710, USA

Results for B = 3 (40 kVp, 55 kVp, 140 kVp) and /=3
55 kVp Spectral diffusion Differgnce

®) = B) SN

@
" Calibration Viaﬁ\_
Kidney Spleen,

£ .3 é
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' B

—
=200 1500

Materials

-200

D. P. Clark, and C. T. Badea, “Spectral diffusion: an algorithm for robust material decomposition of spectral CT data,” f
PMB 59(21), 6445-6467 (2014). dk e




Comparison to Initial Method

Iterative material decomposition with edge-
preserving regularization on both the energy-
resolved input images and the material images

Yields denoised material images AND denoised
energy-resolved CT images

Joint treatment of the energy-resolved input images

No considerations regarding more bins than
materials




Image-based Material Decomposition with a General Volume

Constraint for Photon-Counting CT
Zhoubo Li?, Shuai Leng®, Lifeng Yu®, Zhicong Yu®, Cynthia H. McCollough**®

* Department of Biomedical Engineering and Physiology, Mayo Clinic College of Medicine, Roch-
ester, MN 55905;® Department of Radiology, Mayo Clinic, Rochester, MN 55905

ii. Conversion between CT number and linear attenuation coefficient: The proposed method directly works on CT num-
ber, assuming the relationship between CT number and line attenuation coefficient is

CT =55 % 1000. )

Bw
Combining Eqs. (1) and (2). one can derive the system equation for multi-energy CT measurement:
CT(E) = CT(E)1§ + CT(E), i— + ot CT(E)Nz—" +1000(5 — 1) (3)
1 2 N
and a general condition on volume constraint in the mixture:

S=Crypfay 40 R B, 4)
14 v v

P1 Pz PN

where p; (17) is the concentration (Volume) of basis material 7 in the mixture and p; (V;) is its concentration (Volume)
in its pure form. CT(E), represents the CT number of basis material 7 in its pure form at energy E. Here § is a variable
which depends on the composition of basis materials. It can be smaller or bigger than 1. When it is equal to 1, the pro-
posed method is identical to methods with volume conservation. An example where §>1 is a mixture of iron chloride
(FeCls) and water, which will have a decreased volume relative to the sum of the individual component volumes. Exam-
ples where §<1 include some biopolymer-water solution, which can have a total volume that is greater than the sum of
the individual component volumes.

One can further rearrange (3) and (4) into a matrix form
CT(Ey) CT(E /Py . CT(Edw/p, 1 000][ A
| = |cT @~ CTEWp, 1‘000“ s ]
1000 1000/p; - 1000/p, —1000J16 — 1] (5)
The proposed method determines basis material concentration by solving the following inversion equation:
[p] = [M]*[CT], ©

where p is the unknown basis material and mixture densities, M is a material matrix associated with the attenuation
properties of the basis materials, and [CT] is the matrix of multi-energy CT measurement in Hounsfield unit.

Z.Li,S. Leng, L. Yu, Z. Yu, C. H. McCollough, “Image-based Material Decomposition with a General Volume
Constraint for Photon-Counting CT,” Proc. SPIE Medical Imaging (2015). dk e



Image-based Material Decomposition with a General Volume

Constraint for Photon-Counting CT
Zhoubo Li?, Shuai Leng®, Lifeng Yu®, Zhicong Yu®, Cynthia H. McCollough**®

* Department of Biomedical Engineering and Physiology, Mayo Clinic College of Medicine, Roch-
ester, MN 55905;® Department of Radiology, Mayo Clinic, Rochester, MN 55905

Resultsfor B=4and M=3

80 100 120 140
keV

CaCl, (W/L =200/120) FeCl; (W/L = 140/80) Water (W/L =1200/950) Mixture (W/L =1100/1100)

Density

Z.Li,S. Leng, L. Yu, Z. Yu, C. H. McCollough, “Image-based Material Decomposition with a General Volume
Constraint for Photon-Counting CT,” Proc. SPIE Medical Imaging (2015). dk e




Comparison to Initial Method

- Material decomposition with an additional volume
constraint to allow the separation of more than two
materials without pronounced K-edge

Constrained least-squares fitting based on prior
information to reduce noise in the material images
and to make use of the energy bin redundancy
(unfortunately no details in the paper regarding this
step)

No statistical considerations regarding more bins
than materials




Methods Overview

1 -
Schiomka Maximum Likelihood ULl ER IR
2008 (i.e. non-linear)

Schmidt
2009

Maal3 et al.?3 Bin combinations + rawdata-based
2011 Error propagation (i.e. non-linear)

Error propagation CNR optimization

Alvarez* rawdata-based
2011 sileoeel LU (i.e. non-linear)

Kappler et al. Bin combinations +
2013 Error propagation

Faby et al. SVD + Initial method (of
2014 Error propagation this presentation)

Niu et al. -
5014 Denoising B=M=2, DECT only

Clark and Badea
2014

Li et al. Rank M+1 solution only, volume constraint
2015 no null space (i.e. M+1 materials)

Spectral diffusion

1Schlomka et al. “Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography”, PMB 2008. 22 MaaB, Sawall,
KachelrieB. “Empirical multi-energy calibration (EMEC) for material-selective CT” and “Dose minimization for material-selective CT with energy-selective dkfz
detectors”. IEEE MIC Record, 2011. 4 Alvarez. “Estimator for photon counting energy selective x-ray imaging with multibin pulse height analysis” MedPhys 2011. [ )



Thank You!
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This presentation will soon be available at www.dkfz.de/ct.

Parts of the reconstruction software were provided by RayConStruct® GmbH,
Nurnberg, Germany.




