
Image-Based Material Decomposition 
with Energy-Selective Detectors in 

Multi-Energy CT: A Review

Marc Kachelrieß

German Cancer Research Center (DKFZ)

Heidelberg, Germany

www.dkfz.de/ct



Gd2O2S
7.44 g/cm3

CdTe
5.85 g/cm3

2500 ns FWHM 25 ns FWHM
t t

-
+

+ +
+
++

+ +

-
--

-- --

i.e. max O(40·106) cpsi.e. max O(40·103) cps

Requirements for CT: up to 109 x-ray photon counts per second per mm2.
Hence, photon counting only achievable for direct converters.
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Energy Selective Detectors:
Improved Spectroscopy, Reduced Dose?

Spectra as seen after having passed a 32 cm water layer.

Ideally, bin spectra do not overlap, …



Energy Selective Detectors:
Improved Spectroscopy, Reduced Dose?

Spectra as seen after having passed a 32 cm water layer.

… realistically, however they do! 



Photon Events
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• Detection process in the sensor

• Photoelectric effect (e.g. 80 keV)
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Photon Events
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• Detection process in the sensor

• Compton scattering or K-fluorescence (e.g. 80 keV)
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Photon Events
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• Detection process in the sensor

• Photoelectric effect (e.g. 30 keV), charge sharing

Energy dispersion due to 
charge diffusion



K-Edges: More than Dual Energy CT?

120 kV water transmission curves (gray) given in relative units on a non-logarithmic ordinate.



Remarks

• Photon counting is not necessarily energy-selective.

• Energy-selective CT
– DECT

– Photon-counting energy-selective detectors (i.e. at least two energy 
bins)

• DECT
– DSCT

– Fast TVS

– Sandwich detector

– Split filter

– Two scans

• DECT or two bin photon-counting energy-slective CT 
can distinguish between more than two materials iff 
additional assumptions are made.



Aims

• Decompose MECT data in image domain

• Make use of energy data redundancies
in multi energy CT

• Minimize noise in material images,
i.e. reduce patient dose

Siemens Philips

GE



This photon-counting whole-body CT prototype, installed at the Mayo Clinic, 
is a DSCT system. However, it is restricted to run in single source mode.

Photo courtesy of Siemens Healthcare, Forchheim, Germany.



Motivation

• Without multiple high-Z contrast agents:
• Clinically interesting case only M = 2:

– Water/soft tissue and bone/iodine

– Photoelectric effect and Compton scattering

• Number energy bins B > number basis materials M
� Gain in degrees of freedom, how to use it?

• Image-based method for this task
– Narrow energy bins, images show only very little beam hardening

– Linear image-based methods are fast.

• Projection-based algorithms available
– Maximum likelihood approach (Roessl and Proksa, PMB 2007)

– EMEC + Dose Min. (Maaß, Sawall, Knaup, and Kachelrieß, MIC 2011)



Algorithm Concept

• Linear image weighting

– Material image g

– Weighting coefficients w

– Energy bin images f

• Two subsequent steps:

– Material decomposition calibration

– Image noise minimization using the
K = B – M degrees of freedom

g

f1

f2

f3

f4

w1 ×

w2 ×

w3 ×

w4 ×

+

Bin images f

Material image g



• Example for M = 2: water and iodine

• N = 2 calibration measurements 
using ROIs

• Determine weighting coefficients w

– M×B coefficients, but M×N equations

• This is the case studied 
in the following simulations

Material Decomposition Calibration

Water calibration
(maps water ROI values to target values):

Water only

Water (and iodine shown as water)

Iodine only
Iodine calibration 
(maps iodine ROI values to target values):



Material Decomposition Calibration

• Problem will now be treated separately for each of 
the the M basis materials, i.e. m is fixed

• N ≥ M calibration measurements to determine w:

• In general N ≠ B, least squares approach:

• Linear system for w:

• Singular value decomposition:

B × B matrix, rank at most M Vector of dim. B

Rank M solution Null space, dimension K = B - M



Image Noise Minimization

• Exploit free parameters αk of the null space

• Noise minimization = maximizing CNR

• Covariance matrix C of all bin images:

• Error propagation:

• Minimize variance:

• Resulting linear system                  with:



Simulations

• Assess the proposed algorithm

• Study a typical dual energy CT (DECT) application:

– Material decomposition into a water-equivalent virtual non-
contrast (VNC) image and an iodine material image

• Comparison of:

– Dual energy technique, energy integrating (EI) detectors

– Energy-selective photon counting (PC) detectors

• Based on patient data set with low noise
– Averaged over 8 thin slices

– Separation into water and bone

– Forward projection to obtain material-specific sinograms for 
polychromatic simulation



• Spectral response:

• Energy bin spectra for B = 4:
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[J. P. Schlomka, E. Roessl, R. Dorscheid, S. Dill, G. Martens, T. Istel, C. Bäumer, C. Herrmann, R. Steadman, G. Zeitler, A. Livne
and R. Proksa, “Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography,” 
Phys. Med. Biol. 53, 4031-4047, 2008.]
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Simulations

• Dual source DECT as reference:

– 100 kV

– 140 kV + 0.4 mm Sn

100 kV 140 kV Sn

C = 0 HU / W = 700 HU

20 40 60 80 100 120 140

Energy / keV



Results – Ideal Model

PC 4 bins PC 8 bins
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DS 100 kV / Sn 140 kV PC 2 bins

For details regarding the material decomposition 
method see Faby et al., SPIE 2014.

Water: C = 0 HU / W = 400 HU
Iodine: C = 0 mg/mL / W = 6 mg/mL

reference -34% noise -39% noise -43% noise

reference -18% noise -24% noise -29% noise
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Results – PC (Realistic Model)

PC 4 bins PC 8 bins

Io
d

in
e

DS 100 kV / Sn 140 kV PC 2 bins

For details regarding the material decomposition 
method see Faby et al., SPIE 2014.

Water: C = 0 HU / W = 400 HU
Iodine: C = 0 mg/mL / W = 6 mg/mL

reference +1% noise -4% noise -10% noise

reference +21% noise +15% noise +9% noise

V
N

C
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Patient-Specific Weighting

• Specifically optimized coefficients yield better 
results, especially for children.

VNC image noise Iodine image noise

Patient Bins Std Opt Std Opt

Small

2 0.0% 0.0% 0.0% 0.0%

4 -5.3% -9.5% -6.5% -11.5%

8 -11.9% -15.3% -14.5% -18.5%

Normal

2 0.0% 0.0% 0.0% 0.0%

4 -4.7% -4.7% -5.1% -5.1%

8 -10.1% -10.1% -11.1% -11.1%

Large

2 0.0% 0.0% 0.0% 0.0%

4 -4.3% -4.4% -4.5% -4.7%

8 -9.3% -9.5% -9.9% -10.1%

Simulation settings: 140 kV, realistic PC detector model
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Selected Methods
in chronological order and

in comparison to  the initial method



T. Schmidt, “Optimal “image-based” weighting for energy-resolved CT,” Med. Phys. 39, 3018-3027, (2009).



T. Schmidt, “Optimal “image-based” weighting for energy-resolved CT,” Med. Phys. 39, 3018-3027, (2009).

Results for B = 5



Comparison to Initial Method

• No material decomposition, only CNR optimization

• Comparable to the initial method’s noise 
minimization step (without the calibration)

• Important difference to the initial method’s noise 
minimization:
The weighting coefficients here do not take the 
covariance into account, but only the variance of the 
energy-resolved images. This might be sufficient for 
energy bin images, but surely not for threshold 
images.



S. Kappler, A. Henning, B. Krauss, F. Schoeck, K. Stierstorfer, T. Weidinger, and T. Flohr “Multi-energy performance 
of a research prototype CT scanner with small-pixel counting detector,” Proc. SPIE Medical Imaging, 86680O (2013). 



M = 3 material images calculated from B = 4 thresholds

S. Kappler, A. Henning, B. Krauss, F. Schoeck, K. Stierstorfer, T. Weidinger, and T. Flohr “Multi-energy performance 
of a research prototype CT scanner with small-pixel counting detector,” Proc. SPIE Medical Imaging, 86680O (2013). 



Comparison to Initial Method

• Comparable to the initial method but more expensive since a lot 
of material images for the different threshold combinations 
have to be reconstructed and subsequently weighted to get the 
optimal result.

• The initial method directly finds the optimal weighting 
coefficients and reconstructs the optimal material image.

• The results of this method should be the same as for the initial 
method method if the weighting coefficients are chosen 
optimally, taking the covariance into account.

• Both methods can apply patient specific weighting, although 
Kappler et al. use a water phantom to determine the weighting 
coefficients.

• Kappler et al. work with threshold images, the initial method 
works with bin images, the results should be the same if the 
covariance is correctly taken into account.



This is the initial method.



T. Niu, X. Dong, M. Petrongolo, and L. Zhu, “Iterative image-domain decomposition for dual-energy CT,” Med. Phys. 
41, 041901 (2014).



Dual energy results, B = 2 and M = 2
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T. Niu, X. Dong, M. Petrongolo, and L. Zhu, “Iterative image-domain decomposition for dual-energy CT,” Med. Phys. 
41, 041901 (2014).



Comparison to Initial Method

• Iterative material decomposition with a 
decomposition matrix approach plus edge-
preserving regularization on the material images

• Independent treatment of the two material images

• B = M, i.e. no considerations regarding more bins 
than materials

• Only for DECT



D. P. Clark, and C. T. Badea, “Spectral diffusion: an algorithm for robust material decomposition of spectral CT data,” 
PMB 59(21), 6445-6467 (2014).



D. P. Clark, and C. T. Badea, “Spectral diffusion: an algorithm for robust material decomposition of spectral CT data,” 
PMB 59(21), 6445-6467 (2014).

Results for B = 3 (40 kVp, 55 kVp, 140 kVp) and M = 3 
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Comparison to Initial Method

• Iterative material decomposition with edge-
preserving regularization on both the energy-
resolved input images and the material images

• Yields denoised material images AND denoised
energy-resolved CT images

• Joint treatment of the energy-resolved input images

• No considerations regarding more bins than 
materials



Z. Li, S. Leng, L. Yu, Z. Yu, C. H. McCollough, “Image-based Material Decomposition with a General Volume 
Constraint for Photon-Counting CT,” Proc. SPIE Medical Imaging (2015).



Z. Li, S. Leng, L. Yu, Z. Yu, C. H. McCollough, “Image-based Material Decomposition with a General Volume 
Constraint for Photon-Counting CT,” Proc. SPIE Medical Imaging (2015).

Results for B = 4 and M = 3 

Density



Comparison to Initial Method

• Material decomposition with an additional volume 
constraint to allow the separation of more than two 
materials without pronounced K-edge

• Constrained least-squares fitting based on prior 
information to reduce noise in the material images 
and to make use of the energy bin redundancy 
(unfortunately no details in the paper regarding this 
step)

• No statistical considerations regarding more bins 
than materials



Methods Overview
Authors Method

Post 

Processing
B > M Comments

Schlomka1

2008
Maximum Likelihood No Yes

rawdata-based

(i.e. non-linear)

Schmidt 

2009
Error propagation No - CNR optimization

Maaß et al.2,3

2011

Bin combinations + 

Error propagation
No Yes

rawdata-based

(i.e. non-linear)

Alvarez4

2011
ML-based LUT No Yes

rawdata-based

(i.e. non-linear)

Kappler et al. 

2013

Bin combinations + 

Error propagation
No Yes

Faby et al. 

2014

SVD +

Error propagation
No Yes

Initial method (of 

this presentation)

Niu et al. 

2014
Denoising Yes No B=M=2, DECT only

Clark and Badea 

2014
Spectral diffusion Yes No

Li et al. 

2015

Rank M+1 solution only,

no null space
No Yes

volume constraint 

(i.e. M+1 materials)

1 Schlomka et al. “Experimental feasibility of multi-energy photon-counting K-edge imaging in pre-clinical computed tomography”, PMB 2008. 2,3 Maaß, Sawall, 
Kachelrieß. “Empirical multi-energy calibration (EMEC) for material-selective CT” and “Dose minimization for material-selective CT with energy-selective 
detectors”. IEEE MIC Record, 2011.  4 Alvarez. “Estimator for photon counting energy selective x-ray imaging with multibin pulse height analysis” MedPhys 2011.



Thank You!

This presentation will soon be available at www.dkfz.de/ct.

Parts of the reconstruction software were provided by RayConStruct® GmbH, 
Nürnberg, Germany. 


