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Purpose:

In Image—Guided Radiation Thera-
py (IGRT) an additional kV imaging
system orthogonal to the linear par-
ticle accelerator provides informa-
tion for an accurate patient position-
Ing. However, due to the limited
gantry rotation speed during treat-
ment the typical acquisition time Is
much longer than the patient's
breathing cycle resulting In low
iImage quality. In particular, respira-
tory motion causes severe artifacts
such as Dblurring and streaks In
tomographic images.

Compensating for motion IS an
Interesting option and capable of
providing high quality respiratory-—
correlated 4D volumes. Our pur-
pose Is to estimate the motion and
compensate for it in case of 4D
cone—-beam CT (4DCBCT) scans
and In particular 4D on-board
CBCT scans for IGRT [1]. The
particular challenge is to do this
without knowledge from prior scans
and without specific reguirements
on the acquisition as done In
references [2,3].

Materials and Methods:

Standard CBCT reconstruction ap-
proaches, e.g. using Feldkamp
algorithm [4], backproject all pro-
jection data without considering
patient motion properly and thereby
suffer from motion artifacts. Retro-
spective phase gating In case of
ADCBCT sorts the data into differ-
ent sets according to the respiratory
motion phase. Performing a sepa-
rate reconstruction of each phase
reduces motion artifacts, but results
In artifacts due to an increased an-
gular spacing. Thus, sparse—view
artifacts and a high noise level
deteriorate the image quality.

State—of-the—art methods for esti-
mation of the motion vector fields
suffer from the low sampling of the
data and thus from image artifacts
that appear in the reconstructions.
In applications like ours conven-
tional registration algorithms tend to
register artifacts rather than anat-
omy. Our Idea Is to address this
problem by a new deformable reg-
Istration algorithm mainly based on
a cyclic regularization that avoids
the algorithm being sensitive to the
above—mentioned streak artifacts.
Our new deformable registrations
algorithm consists of a spatial regis-
tration method [5] and a temporal
correction part given by constraints
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Slowly Rotating CBCT Devices

Linear Accelerator

« CBCT imaging unit (kV source and
flat panel detector) mounted on the

gantry of a linear particle accelerator

Detector (LINAC) treatment system

\ '“*;‘h « Comes with a maximum gantry
= . 0
. rotation speed of 6° per second

* Much slower than clinical CT devices
(60 s/360° versus 0.3 s/360°)

» Cycle of respiratory motion usually
in the magnitude of 2 — § seconds,
I.e. 12 — 30 respirations per minute

(rpm)

kV Source

The motivation for the presented work is to provide
high quality respiratory—correlated 4D volumes from on—-board CBCT scans
without any particular slow, multiple or adaptive gantry rotation technique
and without knowledge from prior scans like planning CTs.

Estimation of Motion Vector Fields (MVF)
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Iterative Motion Compensation

Initialization Correction / lteration
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Simulation Data — Results

MoCo with our

Motion Estimation 1: MoCo with conventional MoCo with
motion estimation

motion estimation 1

Each MVF is separately motioAn estimation 2

estimated the
approaches of adjacent
phases first, temporal
constraints, and
iterative correction

Motion Estimation 2:

MVFs are estimated
using the adjacent
phases first approach, 1
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temporal constraint
End-exhale phase bin shown at grayscale window of C = -200 HU / W = 1400 HU.

and iterative correction

Our Motion Estimation:

The proposed method
is used with adjacent
phases first approach,
temporal constraint,
and iterative correction

Phase Gating — Angular Spacing
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Retrospective phase gating reduces motion artifacts.
BUT: Gating results in an enlarged angular spacing of projection bins.
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Motion Compensation (MoCo)

Ground truth in end—-exhale

« Combine benefits

— High temporal resolution of
phase—correlated images

— Low noise level from standard
reconstructions

» Use of all projections
— Even those of other phase bins

— Compensate for motion using motion vector
fields (MVF) determined via motion estimation

— In our case motion estimation is performed
on phase-correlated Feldkamp images

« Backproject along straight lines, then warp
with respect to the MVFs (corresponds to
backprojection along curved lines)

— Projection data p, phase-correlated
reconstruction operator XgéF, MVF T} /
from phase bin ) to phase bin ¢ / if
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Backprojection on (straight)
acquisition lines of a projection
acquired in end-inhale

Warped backprojection

Simulation Data — Results

Ground Truth Feldkamp
((cap} (FDK)

Phase-Correlated Motion—-Compensated
' Feldkamp (PCF) (MoCo)

End—-exhale phase bin shown at grayscale window of C = -200 HU / W = 1400 HU.

Simulation Data — Results
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Patient Data — Results

Patient 1

MoCo
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For two different patients the end—exhale (EE) and end-inhale (El) phase bin are shown
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and the dotted lines mark edge positions in end—exhale.
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like the cyclic motion patterns of
respiration. A potential overcorrec-
tion by the temporal part is avoided
by Iiterative refinement.

Results:

The test set consists of synthesized
data, obtained by deforming a
clinical patient dataset, and patient
scans Including RPM information
acquired with the On-Board
Imager's® and the TrueBeam’s™
iIntegrated kV imaging unit (Varian
Medical Systems, Palo Alto, USA).

The standard Feldkamp CBCT re-
construction results In a poor tem-
poral resolution. The respiratory—
correlated 4DCBCT reconstruction
comes with a high temporal resolu-
tion and reduced motion Dblurring,
but image quality is deteriorated
due to the increased angular spac-
ing of applied projections. Our
motion compensation with cyclic
motion estimation shows a good
temporal resolution and highly re-
duced impact of few—view artifacts
at the same time. The registration
algorithm shows low sensitivity on
Image artifacts and Is able to re-
cover respiratory motion. Finer de-
tails like pulmonary vessels hidden
by motion or streak artifacts be-
come visible in motion—compensat-
ed images. The drawback of poten-
tial underestimation of motion In
case of Initial motion compensation
IS reduced by a correction step.
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