Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.
Statistics

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external video platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name Youtube
Purpose External media

Publications

Corresponding author research articles

1. Weisshaar, N., Wu, J., Ming, Y., Madi, A., Hotz-Wagenblatt, A., Ma, S., Mieg, A., Hering, M.,  Zettl, F.,  Mohr, K., Schlimbach, T., Ten Bosch, N., Hertel, F., Müller, L., Byren, H., Wang, M., Borgers, H., Munz, M., Schmitt, L., van der Hoeven, F., Kloz, U., Carretero, R., Schleußner, N., Jackstadt, R.F., Hofmann, I., and Cui, G. (2022). Rgs16 Promotes Anti-tumor CD8+ T Cell Exhaustion. Science Immunology 7, eabh1873.

2. Madi, A#., Weisshaar, N., Buettner, M., Poschet, G., Ma, S., Wu, J., Mieg, A., Hering, M., Ming, Y., Mohr, K., Ten Bosch, N., and Cui, G#. (2022). CD8 agonism functionally activates memory T cells and enhances anti-tumor immunity. International Journal of Cancer DOI: 10.1002/ijc.34059  (#co-corresponding authors)

3. Xu, S., Chaudhary, O., Rodríguez-Morales, P., Sun, X., Zappasodi, R., Xu, Z., Pinto, A.F.M., Williams, A., Chen, D., Low, J.S., Farsakoglu, Y., Tang, W., Wang, H., Varanasi, S.K., McDonald, B., Tripple, V., Downes, M., Evans, R.M., Abumrad, N.A., Merghoub, T., Wolchok, J.D., Shokhirev, M.N., Ho, P.-C., Witztum, J.L., Emu, B., Cui, G.#, and Kaech, S.M#. (2021). Oxidized Lipids and CD36-Mediated Lipid Peroxidation in CD8 T Cells Suppress Anti-Tumor Immune Responses. Immunity 54, 1561 – 1577. (#co-corresponding authors)

4. Wu, J.*, Ma, S.*, Sandhoff, R.*, Ming, Y., Hotz-Wagenblatt, A., Timmerman, V., Bonello-Palot, N., Schlotter-Weigel, B., Auer-Grumbach, M., Seeman, P., Löscher, W.N., Reindl, M., Weiss, F., Mah, E., Weisshaar, N., Madi, A., Mohr, K., Schlimbach, T., Velasco Cárdenas, R.M.H., Koeppel, J., Grünschläger, F., Müller, L., Baumeister, M., Brügger, B., Schmitt, M., Wabnitz, G., Samstag, Y., and Cui, G. (2019). Loss of Neurological Disease HSAN-I-Associated Gene SPTLC2 Impairs CD8+ T Cell Responses to Infection by Inhibiting T Cell Metabolic Fitness. Immunity 50, 1218 – 1231. (*co-first authors)

5. Wu, J., Weisshaar, N., Hotz-Wagenblatt, A., Madi, A., Ma, S., Mieg, A., Hering, M., Mohr, K., Schlimbach, T., Borgers, H., and Cui, G. (2020). Skeletal Muscle Antagonizes Antiviral CD8+ T Cell Exhaustion. Science Advances 6:eaba3458.

6. Wu, J., Madi, A., Mieg, A., Hotz-Wagenblatt, A., Weisshaar, N., Ma, S., Mohr, K., Schlimbach, T., Hering, M., Borgers, H., and Cui, G. (2020). T Cell Factor 1 Suppresses CD103+ Lung Tissue-Resident Memory T Cell Development. Cell Reports31, 107484.

7. Wu, J.*, Ma, S.*, Hotz-Wagenblatt, A., Angel, P., Mohr, K., Schlimbach, T., Schmitt, M. and Cui, G. (2019). Regulatory T Cells Sense Effector T Cell Activation Through Synchronized JunB Expression. FEBS Letters 593, 1020 – 1029. (*co-first authors)

 

Corresponding author invited reviews

1. Madi, A., and Cui, G. (2020). Regulation of immune cell metabolism by cancer cell oncogenic mutations. International Journal of Cancer 147, 307–316.

2. Weisshaar, N.*, Madi, A.*, and Cui, G. (2018). Early TCR Signaling Sweetens Effector Function through PDHK1. Trends in Endocrinology & Metabolism 29, 595-597. (*, co-first authors)

 

First author research articles

1. Cui, G., Staron, Matthew M., Gray, Simon M., Ho, P.-C., Amezquita, Robert A., Wu, J., and Kaech, Susan M. (2015). IL-7-Induced Glycerol Transport and TAG Synthesis Promotes Memory CD8+ T Cell Longevity. Cell 161, 750-761.

2. Cui, G., Qin, X., Wu, L., Zhang, Y., Sheng, X., Yu, Q., Sheng, H., Xi, B., Zhang, J.Z., and Zang, Y.Q. (2011). Liver X receptor (LXR) mediates negative regulation of mouse and human Th17 differentiation. J Clin Invest 121, 658-670.

3. Cui, G., Zhang, Y., Gong, Z., Zhang, J.Z., and Zang, Y.Q. (2009). Induction of CD4+CD25+Foxp3+ regulatory T cell response by glatiramer acetate in type 1 diabetes. Cell Res 19, 574-583.

4. Cui, G.*, Qin, X.*, Zhang, Y., Gong, Z., Ge, B., and Zang, Y.Q. (2009). Berberine differentially modulates the activities of ERK, p38 MAPK, and JNK to suppress Th17 and Th1 T cell differentiation in type 1 diabetic mice. J Biol Chem 284, 28420-28429. (*, co-first authors)

5. Cui, G., Zhang, Y., Liu, C., Skinner, S., and Qin, Y. (2008). Pancreatic Cancer Suppression by Natural Polyphenols. Scholarly Research Exchange 2008, Article ID 540872.

 

Co-author research articles

1. Qi X., Qiu J., Chang J., Ji Y., Yang Q., Cui, G., Sun, L., Chai Q., Qin J., Qiu J. (2020) Brg1 restrains the pro-inflammatory properties of intestinal ILC3s and modulates intestinal inflammation. Mucosal Immunology (https://doi.org/10.1038/s41385-020-0317-3)

2. Lamas-Murua, M., Stolp, B., Kaw, S., Thoma, J., Tsopoulidis, N., Trautz, B., Ambiel, I., Reif, T., Arora, S., Imle, A., Tibroni, N., Wu, J., Cui, G., Stein, J.V., Tanaka, M., Lyck, R., and Fackler, O.T. (2018). HIV-1 Nef Disrupts CD4+ T Lymphocyte Polarity, Extravasation, and Homing to Lymph Nodes via Its Nef-Associated Kinase Complex Interface. The Journal of Immunology 201, 2731-2743.

3. Hwangbo, C.*, Wu, J.*, Papangeli, I., Adachi, T., Sharma, B., Park, S., Zhao, L., Ju, H., Go, G.-w., Cui, G., Inayathullah, M., Job, J.K., Rajadas, J., Kwei, S.L., Li, M.O., Morrison, A.R., Quertermous, T., Mani, A., Red-Horse, K., and Chun, H.J. (2017). Endothelial APLNR regulates tissue fatty acid uptake and is essential for apelin’s glucose-lowering effects. Sci Transl Med 9, eaad4000. (*, co-first authors)

4. Ho, P.C., Bihuniak, J.D., Macintyre, A.N., Staron, M., Liu, X., Amezquita, R., Tsui, Y.C., Cui, G., Micevic, G., Perales, J.C., Kleinstein, S.H., Abel, E.D., Insogna, K.L., Feske, S., Locasale, J.W., Bosenberg, M.W., Rathmell, J.C., and Kaech, S.M. (2015). Phosphoenolpyruvate Is a Metabolic Checkpoint of Anti-tumor T Cell Responses. Cell 162, 1217-1228.

5. Staron, M.M., Gray, S.M., Marshall, H.D., Parish, I.A., Chen, J.H., Perry, C.J., Cui, G., Li, M.O., and Kaech, S.M. (2014). The transcription factor FoxO1 sustains expression of the inhibitory receptor PD-1 and survival of antiviral CD8(+) T cells during chronic infection. Immunity 41, 802-814.

6. Han, R., Lai, R., Ding, Q., Wang, Z., Luo, X., Zhang, Y., Cui, G., He, J., Liu, W., and Chen, Y. (2007). Apolipoprotein A-I stimulates AMP-activated protein kinase and improves glucose metabolism. Diabetologia 50, 1960-1968.

 

 

 

to top
powered by webEdition CMS