
Algorithm for

Hyperfast Cone-Beam Spiral Backprojection

Sven Steckmann⋆1, Michael Knaup1, and and Marc Kachelrieß1

Institute of Medical Physics (IMP), University of Erlangen–Nürnberg, Henkestr. 91,
91052 Erlangen, Germany.

Abstract. Cone–beam spiral backprojection is computationally highly
demanding. At first sight, the backprojection requirements are similar
to those of cone–beam backprojection from circular scans such as it is
performed in the widely used Feldkamp algorithm. However, there is an
additional complication: the illumination of each voxel, i.e. the range of
angles the voxel is seen by the x–ray cone is a complex function of the
voxel position. The weight function has no analytically closed form and
must be numerically determined. Storage of the weights is prohibitive
since the amount of memory required equals the number of voxels per
spiral rotation times the number of projections a voxel receives contribu-
tions and therefore is in the order of 109 to 1011 floating point values for
typical spiral scans. We propose a new algorithm that combines the spiral
symmetry with the ability of today’s 64 bit CPUs to store large amounts
of precomputed weights. Our new backprojection algorithm achieves up
to 11 Giga voxel updates per second (GUPS) on a standard four–socked
quad core CPU (Intel Xeon 7300 platform, 3 GHz, Intel Corporation).
This equals the reconstruction of 225 images per second assuming each
slice consists of 512×512 pixels, receiving contributions from 512 projec-
tions.

1 Introduction

High performance image reconstruction (HPIR) basically means high perfor-
mance backprojection since backprojection is the most demanding step in the
image reconstruction pipeline. Recently, we published our work on high per-
formance parallel beam backprojection and high performance perspective cone–
beam backprojection using cell broadband engine (CBE) based implementations
and central processing unit (CPU) based implementations [1].

Spiral backprojection is, however, more complicated since the illumination
of the voxels by the cone exhibits a complex voxel location–dependent behavior
that must be taken into account during the backprojection step. Basically, this
requires to compute a weight function w(x, y, z, α), where (x, y, z) is the voxel
position and α is the angle of the ray that is backprojected, and apply this func-
tion during the backprojection. Numerous algorithms have been published that
already use voxel–specific weighting [2–5]. Others assume some simplifications
to circumvent the problem of voxel–specific weighting and thereby compromise
either dose usage or image quality [6–12]. Also implementations of quasiexact

⋆ Corresponding author: sven.steckmann@imp.uni–erlangen.de

2

and exact reconstruction algorithms such as [13–15] may profit from our new
approach.

This paper proposes a new backprojection algorithm that is able to perform
the correct voxel weighting and that can be used together with any spiral re-
construction algorithm, be it exact, approximate or iterative (in which case a
corresponding forward projector must be programmed as well). This paper does
not propose a new type of image reconstruction.

2 Backprojection

Let α be the projection angle. The source position as a function of α is given as

s(α) =





RF sin α
−RF cosα

d̄α





where d̄ = d/2π and d is the table increment per full rotation and RF the radius
of the focal trajectory. Backprojection means evaluating

f(x, y, z) =

∫

dα w(x, y, z, α)p̂(α, u, v)

with u = u(x, y, z, α) and v = v(x, y, z, α) being the detector’s lateral and longi-
tudinal coordinates given by the intersection of the ray from s(α) through the
voxel (x, y, z) with the detector surface.

Our aim is to precompute and store the weight function w(x, y, z, α) as well
as the detector look–up coordinates u(x, y, z, α) and v(x, y, z, α) before image
reconstruction. Our aim further is to vectorize the backprojection algorithm.

To achieve full vectorization of the backprojection algorithm and to reduce
the memory required to store the voxel–specific weights we now use the fact that
the system has a spiral symmetry. Let

f̂(x, y, α) = f(x cos α − y sin α, x sin α + y cosα, d̄α)

be a new representation of the volume f . In the new volume f̂ each slice rotates

in the same fashion as the spiral trajectory. Hence f̂ exhibits the same spiral
symmetry as the data acquisition itself. The slice’s z–position is determined by
the projection angle α. Now, backprojection is

f̂(x, y, α) =

∫

da w(x, y, a)p̂(α + a, u, v)

with u = u(x, y, a) and v = v(x, y, a). The angle a is counting relative to the
slice position.

This new backprojection equation is much more favorable to implementation
since neither the integrand’s weight function nor the look–up values u and v
depend on the absolute angle α, they only depend on the relative angle a. Hence
we can loop over a range of z–positions α and add the corresponding projection
entries to the volume without reevaluation of the weighting or look–up values. If

3

we represent f̂ and p̂ with α being the linear, and thus fast, variable in memory
we achieve a fully vectorization of the backprojection. The spiral symmetry fur-
ther helps to reduce the weight table w and the look–up positions u and v from
four–dimensional arrays to significantly smaller three–dimensional tables. These
can be easily held in memory of modern PCs where 16 to 32 GB of memory
are typically available. The (non–optimized) reference source code of listing 1
illustrates the algorithm for backprojection.

Listing 1: Reference backprojection algorithm.
void SpiralBP(int const I, // Number of x-pixels x

int const J, // Number of y-pixels y
int const K, // Number of slices z
int const L, // Number of rows v
int const M, // Number of channels u
int const N, // Number of views a

int const * const mLut, // u(x, y, a)
int const * const lLut, // v(x, y, a)

float const * const wLut, // w(x, y, a)
float const * const Raw, // p(alpha+a, u, v)
float * const Vol) // f(x, y, alpha)

{
#define mlut(i, j, n) mLut[((0+i)*J+j)*N+n]
#define llut(i, j, n) lLut[((0+i)*J+j)*N+n]
#define wlut(i, j, n) wLut[((0+i)*J+j)*N+n]
#define V(i, j, k) Vol[((0+i)*J+j)*K+k]
#define R(l, m, n, k) Raw[(((0+l)*M+m)*(N+K)+n+k]

for(int i=0; i<I; i++) // x-loop
for(int j=0; j<J; j++) // y-loop
for(int n=0; n<N; n++) // a-loop

{
int const m=mlut(i, j, n); // u(x, y, a)
int const l=llut(i, j, n); // v(x, y, a)

float const w=wlut(i, j, n); // w(x, y, a)

for(int k=0; k<K; k++) V(i, j, k)+=w*R(l, m, n, k); // z-loop
}

}

The listing clearly shows why this algorithm is good for vectorization. The
innermost loop, i.e. the loop over k, is the fastest index. For treating this loop
as a vector, the data belonging to this loop must be arranged linear in memory.
This can be seen from the data layout as specified by #define directives: the
index k is a simple offset in the data and thus accesses are linear in memory.

The limitation of this version of the algorithm is that the distance of adjacent
slices is fixed to the increment ∆z of the scanner between two adjacent projec-
tions. This problem can be resolved by a new variable dN that counts how many
multiples of ∆z the slices shall be separated. The extened algorithm is given
in listing 2. Note that adding the freedom to specify the longitudinal sampling
requires only the simple decomposition of the view number n into n=kk*dN+dn.
This is nothing but a reordering of our projections.

Note that the innermost loop remains to be fast and vectorizeable. The main
difference to our listing 1 is that the memory layout of the rawdata has become
slightly more complex and is now five–dimensional.

3 Slice Rotation

The improved backprojection performance comes at the price of having the slices
rotating together with the spiral. This requires us to add an additional rotation

4

Listing 2: Algorithm with slice increments.
void SpiralBP(int const I, // Number of x-pixels x

int const J, // Number of y-pixels y
int const K, // Number of slices z
int const L, // Number of rows v
int const M, // Number of channels u
int const N, // Number of views a
int const dN, // Slice increment
int const * const mLut, // u(x, y, a)
int const * const lLut, // v(x, y, a)
float const * const wLut, // w(x, y, a)
float const * const Raw, // p(alpha+a, u, v)
float * const Vol) // f(x, y, alpha)

{
#define mlut(i, j, n) mLut[((0+i)*J+j)*N+n]
#define llut(i, j, n) lLut[((0+i)*J+j)*N+n]
#define wlut(i, j, n) wLut[((0+i)*J+j)*N+n]
#define R(l, m, dn, kk, k) Raw[(((0+dn)*L+l)*M+m)*KTot+kk+k]
#define V(i, j, k) Vol[((0+i)*J+j)*K+k]

int const KK=N/dN, KTot=KK+K;

for(int i=0; i<I; i++) // x-loop
for(int j=0; j<J; j++) // y-loop
for(int dn=0; dn<dN; dn++) // a-loop (dn-part)
for(int kk=0; kk<KK; kk++) // a-loop (kk-part)

{
int const n=kk*dN+dn; // compose n using kk and dn

int const m=mlut(i, j, n); // u(x, y, a)
int const l=llut(i, j, n); // v(x, y, a)

float const w=wlut(i, j, n); // w(x, y, a)

for(int k=0; k<K; k++) V(i, j, k)+=w*R(l, m, dn, kk, k); // z-loop
}

}

step. A more significant disadvantage of the approach is that the field of view
(FOV), i.e. the region of the field of measurement (FOM) that shall be recon-
structed, must be centered in the isocenter and it will be circular. To obtain
rectangular FOVs some clipping must occur after the rotation step. In compar-
ison to the high reconstruction speed, this does not carry any weight if we drop
some reconstructed voxels.

Rotation Algorithm

To rotate the slices back we have to implement the transform

f(x, y, z) = f̂(x cos α + y sin α, y cosα − x sin α, α).

The image processing literature suggests many possible solutions to rotate
images [16–18]. To be fast and accurate we use a simple destination–driven re-
sampling of the rotated images with a two–by–two point interpolation. This
interpolation uses a trapezoidal function to prevent loss of spatial resolution and
to avoid creating aliasing. Slice rotation requires interpolation only in the lateral
variables and no longitudinal interpolation since the rotated slices are generated
just at the required z–positions (i.e. the values of α are chosen to match the
required slice positions z).

5

For interpolation we use the trapezoidal function Tw(χ). It consists of a
plateau of size 1 − w and has a full width of 1 + w. Mathematically,

Tw(χ) =
1

2w











0 if |2χ| > 1 + w

1 + w − |2χ| else if |2χ| > 1 − w

2w else

The parameter χ stands for the index domain where interpolation occurs (e.g.
for pixel columns i or rows j). Note that w = 0 results in nearest neighbor
interpolation while w = 1 gives a linear interpolation algorithm.

The slice rotation algorithm uses the parameter w = 0.5 for interpolation in
the x– and y–direction.

Kernel Modifications

To compensate for the smoothing caused by the interpolation during slice rota-
tion we have to modify the reconstruction kernel to return to the original spatial
resolution and image noise level. An empirical approach is used to do so. To
describe the smoothing of the point spread function during the interpolation we
used a convolution with a Gaussian function. In Fourier domain this means:

K̂m = Kmea m
2

.

Km, with m being the channel index, represents the standard kernel (in Fourier
domain) that would be used for a conventional spiral backprojection algorithm

without slice rotation. K̂m is our kernel modification. The parameter a > 0 is
empirical chosen to match the spatial resolution and the image noise to the noise
obtained with a standard backprojection algorithm.

More Advanced Grids

Since slice rotation requires a final rotation and therefore a final resampling
step and since this requires an empirical kernel adaptation one can also think
of doing the complete backprojection on a non–Cartesian grid at no additional
costs. Resampling to the Cartesian grid can then be done together with the slice
rotation at no additional cost. As presented in reference [19] a hexagonal grid has
several advantages over the standard Cartesian sampling. In comparison to the
Cartesian grid, the hexagonal grid needs only

√
3/2 ≈ 0.866 times the number

of pixels for the same sampling density.

4 Results

For our studies a 3rd generation scanner geometry with RF = 600 mm, RD =
450 mm and RM = 800 mm was used. During one rotation N360 = 512 projections
were simulated with a table feed of d = 32 mm per rotation. This corresponds
to a pitch of one. We are using a detector with M = 512 channels of 0.9 mm
width and L = 64 detector rows with a slice thickness of 0.5 mm (dimensions
corresponding to the isocenter).

6

The patient data were acquired with a Siemens Sensation 64 scanner (Siemens
Healthcare, Forchheim, Germany). This scanner has the same geometry as used
in our simulations but it acquires N360 = 1160 projections per rotation with
each detector row consisting of M = 672 channels.

Images were reconstructed using the EPBP reconstruction algorithm, which
is an approximate Feldkamp–type image reconstruction algorithm for spiral (and
sequential) CT with a flexible voxel–specific weighting scheme that can allow
for either 100% dose usage or for phase–correlated imaging or it can be used
to only backproject data from the minimal data window (Pi window) [2]. The
reconstructed volume consists of 5123 voxels.

Image Quality

Since our hyperfast general purpose backprojection approach requires an addi-
tional slice rotation step we have to analyze whether this additional step changes
the image quality (spatial resolution and noise).

To compare image quality we define the reference gold–standard image to be
an unrotated image, i.e. an image before the rotation step that does not need
any rotation (apart from multiples of 90◦ which does not require interpolation).
The reference image represents the maximum image quality achievable by the
selected reconstruction algorithm.

To measure the noise propagation and compare it to our standard, a simu-
lated cylindrical phantom filled with water was simulated and evaluated. Table
1 shows that the modified reconstruction kernel correctly compensates for dif-
ferences in image noise due to the rotation step: both the conventional backpro-
jection and our hyperfast approach yield identical image noise.

Algorithm Type Image Noise Spatial Resolution
Conventional Backprojection 58.0 HU 0.947 mm

Hyperfast Backprojection 57.0 HU 0.945 mm
Table 1. The evaluation of image quality shows that both reconstructions are identical.
Due to the modified kernel the slice rotation does neither increase or decrease noise or
spatial resolution.

The spatial resolution was assessed using reconstructions of a slanted edge.
Figure 2 shows such an image. To measure the spatial resolution the top edge of
the inner rhomboid was used.

−6 −4 −2 0 2 4 6
0.8

1

1.2

1.4

1.6

1.8

2

2.2

poisition / mm

re
co

ns
tr

uc
te

d
va

lu
e

High performance BP
Conventional BP

(a) Edge spread function p(x)

−6 −4 −2 0 2 4 6
−0.005

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

position / mm

re
co

ns
tr

uc
te

d
va

lu
e

High performance BP
Conventional BP

(b) Pseudo point spread function p′(x)

Fig. 1. The edge spread function and the pseudo point spread function of an example
image.

7

(a) Conventional backpro-
jection reconstruction

(b) Hyperfast backprojec-
tion reconstruction

(c) Difference

Fig. 2. The resolution test phantom (with -1000 HU for air, 0 HU for the phantom
body and 1000 HU for the slanted edge part). The images are displayed with C=0 HU
and W=1000 HU and the difference image uses C=0 HU and W=250 HU.

Table 1 shows that the hyperfast backprojection with its final rotation step
does not introduce any loss in spatial resolution. This result is confirmed regard-
ing figure 1 which shows the edge spread function and the pseudo point spread
function for both approaches, a conventional backprojector (without slice rota-
tion) and the hyperfast spiral backprojector with slice rotation. If we have a
look at the difference images in figure 2 we recognize some aliasing noise located
at the edges of the objects. Since this is a natural behavior and since we can-
not appreciate these subtle aliasing artifacts in the original images but only in
difference images we consider the influence of the slice rotation to be negligible.

The semianthropomorphic FORBILD thorax phantom (http://www.imp.uni-
erlangen.de/phantoms) was simulated and reconstructed to demonstrate the im-
age quality in a more realistic setting. The images and the difference image in
figure 2 does not show any conspicuousness or additional artifacts.

(a) Conventional backpro-
jection reconstruction

(b) Hyperfast backprojec-
tion reconstruction

(c) Difference

Fig. 3. FORBILD thorax phantom. Gray level C=0 HU, W=500 HU for the images
and C=0 HU, W=100 HU for the difference image.

To demonstrate the quality of the algorithm in the clinical routine, a dataset
from a Siemens Sensation 64 scanner was reconstructed with the reference and
with the hyperfast algorithm (figure 4). In contrast to the two simulated phan-
toms, the clinical data contain noise. The difference image shows no anatomi-

8

cal structures inside the patient: hence both algorithms provide identical image
quality.

(a) Conventional backpro-
jection reconstruction

(b) Hyperfast backprojec-
tion reconstruction

(c) Difference

Fig. 4. Patient data. The images are scaled with C=0 HU, W=500 HU and with
C=0 HU, W=100 HU for the difference image.

Time Measurements and Implementation Details

For our time measurements we used an Intel Xeon 7300 platform with four
X7350 processors running at 2.93 GHz. The results are shown in table 2. For a
fair comparison between different algorithms we calculate the total numbers of
updates and divide them by 10243 to get our giga updates (GU). An update is a
summation of the rawdata value to the final volume. After a time measurement
we calculate the giga updates we can handle per second (GUPS, giga updates
per second). For a spiral trajectory this is not as easily to calculate as for a
circle, so let us make an example for the circle trajectory. First: Assume we are
using 512 projections per 360◦. Our volume contains 5123 voxels, then we have a
total amount of 64 GU. Due to the fact of the more complex spiral, illumination
interruption may occur and no analytical formula can be given to calculate the
GU-value. In the above described geometry reconstruction of a typical volume
having 5123 voxels we need 47.8 GU using the EPBP algorithm.

The code measured here is an optimized version which uses well known tech-
niques like loop unrolling and subset building to achieve high cache utilization
and so best performance (optimization tricks can be found in reference [20]).
For multiprocessing (we have up to 16 cores for data processing) the code is
parallelized with OpenMP directives.

BP time Operation Count Performance Frame Rate
EPBP (conv.) 39.5 s 47.8 GU 1.22 GUPS 13.0 s−1

EPBP 4.72 s 48.2 GU 10.7 GUPS 114 s−1

1-Pi 2.29 s 25.3 GU 11.1 GUPS 225 s−1

Table 2. Timing results. The conventional backprojection algorithm is compared to
the hyperfast backprojection which improves performance by about a factor of five.

To obtain an overview of the resources required we summarize the size of the
weighting and look–up tables and of the data arrays in table 3. The number of
entries of the look–up tables was calculated using the following formula:

dN · I · J · (KK + K).

9

KK is highly dependent from the algorithm used. KK represents the num-
bers of projections needed for reconstructing one complete slice. For example we
find KK = 632 for the EPBP algorithm whereas the 1–Pi window reconstruction
yields KK = 128. Note that table reftab:tableEntriesMemory was generated us-
ing K = 256. Consequently it took us two calls to the backprojection function
to reconstruct the complete volume with 512 slices.

Entries Memory Usage
Weighting tables 209 · 106 800 MB

Lookup tables 209 · 106 800 MB
Raw data 116 · 106 444 MB

Volume data 67 · 106 256 MB
Sum 2300 MB

Table 3. Table entries and memory usage needed for reconstructing K = 256 slices.

Fig. 5. Scaling on the system using multiple threads.

Hyperfast spiral backprojection requires a large memory bandwidth. To an-
alyze the situation for our architecture we conducted reconstructions with vary-
ing number of cores, or threads (figure 5). The graph runs into saturation after
about 13 threads which indicates that the memory bandwidth is limited (to
about 5 GB/s). In this case the threads have to share the same bus and there-
fore the bandwidth available is divided. The Cell Broadband Engine (CBE) that
has a memory bandwidth of 25 GB/s is more efficient in this case (table 4).

Architecture Cores Spiral BP Perspective BP Parallel BP
Cell (Mercury CBE) 8 23 GUPS 4.7 GUPS 21 GUPS
Cell (Mercury CBE) 16 46 GUPS 9.4 GUPS 42 GUPS

Intel Xeon 7300 16 11 GUPS 13 GUPS 58 GUPS
NVIDIA GeForce 8800 GTX 128 – 12 GUPS –

Table 4. Comparison between different reconstruction algorithms and platforms.

Comparing this method to high performance implementations of other re-
construction types (RayConStruct, Nürnberg, Germany) we find that the spiral
backprojection, although highly optimized, is still slower than the computa-
tional intensive and hard to vectorize perspective backprojection (table 4) on
the CPU. Tests with a smaller amount of rawdata (a downsampled detector)
shows a convergence of the performance from spiral backprojection towards the
parallel backprojection.

10

5 Discussion

Our hyperfast backprojection approach is a general–purpose backprojector since
it can be used with any spiral image reconstruction algorithm. It benefits from
using the symmetries of the trajectory. The concept itself can be adapted to other
trajectories of high symmetry as well. A drawback of the proposed algorithm is
the requirement for circular FOVs that are centered about the rotation center.
This drawback is somewhat compensated by the high reconstruction speed of
the algorithm. The fact that the final slice rotation step is required may be
regarded as a disadvantage. However, in combination with more sophisticated
reconstruction grids, such as the hexagonal grid for example, it is an ideal setting.
Computationally, the final slice rotation is costless.

The performance values shown in this paper are only an example that is valid
for this specific scanner geometry and reconstruction algorithm. Our experiments
have shown that slight changes of the geometry (e.g. a different cone–angle, or a
different numbers of slices) may significantly change those values. The numbers
cited here are the most conservative ones we observed. The performance values
that we obtain for various geometry range from about 5 GUPS to up to 34 GUPS
on the CPU. These significant variations between geometries and algorithms
can be understood regarding the fact that memory bandwidth constitutes the
major performance bottleneck, today. Different memory access patterns (e.g. by
changing the spiral pitch value) may therefore have significant effects.

The most significant impact on the bandwidth bottleneck is the access to
the rawdata, which is hardly predictable. The rawdata storage pattern can be
improved if one desires to optimize the algorithm for a specific scanner and scan
geometry.

6 Other Publications

Recently other implementation for spiral CT were published (Comparisons to
parallel-beam or perspective cone-beam backprojection algorithms can be found
in reference [1]).

One of them using a standard Siemens geometry of 1160 projections and 672
detector channels [21]. This group uses a HP 6200 Workstation with 2 Intel Xeon
3.2 GHz processors for their backprojection. They backproject one slice with
512×512 pixels with their optimized algorithm within 1.32 s. This reconstruction
has an operational count of 0.28 GU and given the speed of 1.32 s per slice we
find that they achieve a performance of 0.21 GUPS.

A GPU–based spiral image reconstruction was analyzed in reference [22]. The
authors report about reconstructions of simulated data (256 slices) and measured
data (216 slices) with a pitch value of one. Each slice has 256 × 256 pixels and
there are 360 projections (simulation) and 720 projection (measurement) per
rotation to backproject. With a voxel update number of 5.6 GU for the simulation
and 9.5 GU for the measurement this is a rather tiny problem. They are using
two different GPUs, the best results are obtained with an NVIDIA GeForce
8800 GTX where they observe up to 1.5 GUPS. Their CPU–based reference
code achieves only 0.07 GUPS.

11

7 Summary and Conclusion

The performance of spiral cone–beam image reconstruction is improved using
our hyperfast general–purpose backprojection approach. Due to using the spiral
symmetry in an elegant way we achieve a high level of vectorization combined
with parallelization. The approach is compatible with today’s CPUs but also
performs very well on the CBE.

A eight–fold performance improvement was observed when comparing this
new approach to our highly optimized conventional spiral cone–beam backpro-
jector. Comparing to other groups our hyperfast approach seems to be faster by
order of magnitudes.

The image quality achievable with the new backprojector is identical to con-
ventional reconstructions.

Acknowledgments

This work was supported by Visage Imaging GmbH, Berlin, Germany. Parts of
the reconstruction software were provided by RayConStruct GmbH, Nürnberg,
Germany. We thank the Intel Corporation, for providing their latest multi–core
platforms.

References

1. Kachelrieß, M., Knaup, M., Bockenbach, O.: Hyperfast parallel–beam and cone–
beam backprojection using the cell general purpose hardware. Medical Physics
34(4) (April 2007) 1474–1486

2. Kachelrieß, M., Knaup, M., Kalender, W.A.: Extended parallel backprojection
for standard 3D and phase–correlated 4D axial and spiral cone–beam CT with
arbitrary pitch and 100% dose usage. Medical Physics 31(6) (June 2004) 1623–
1641

3. Kachelrieß, M., Knaup, M., Kalender, W.A.: Multi–threaded cardiac CT. Medical
Physics 33(7) (July 2006) 2435–2447

4. Taguchi, K., Chiang, B.S.S., Silver, M.D.: A new weighting scheme for cone-beam
helical CT to reduce the image noise. Phys Med Biol 49(11) (Jun 2004) 2351–2364

5. Tang, X., Hsieh, J., Nilsen, R.A., Dutta, S., Samsonov, D., Hagiwara, A.: A three-
dimensional-weighted cone beam filtered backprojection (CB–FBP) algorithm for
image reconstruction in volumetric CT–helical scanning. Phys Med Biol 51 (2006)
855–874

6. Danielsson, P.E., Edholm, P., Eriksson, J., Magnusson-Seger, M., Turbell, H.: Heli-
cal cone beam scanning an reconstruction of long objects using 180 degree exposure.
Patent Appl. PCT/SE 98/00029 (Jan. 1998)

7. Kachelrieß, M., Schaller, S., Kalender, W.A.: Advanced single-slice rebinning in
cone–beam spiral CT. Medical Physics 27(4) (2000) 754–772

8. Taguchi, K., Aradate, H.: Algorithm for image reconstruction in multi-slice helical
CT. Medical Physics 25 (1998) 550–561

9. Larson, G.L., Ruth, C.C., Crawford, C.R.: Nutating slice CT image reconstruction
apparatus and method. United States Patent 5,802,134 (1998)

10. Stierstorfer, K., Flohr, T., Bruder, H.: Segmented multiple plane reconstruction: a
novel approximate reconstruction scheme for multi-slice spiral CT. Phys Med Biol
47 (2002) 2571–2581

12

11. Defrise, M., Noo, F., Kudo, H.: A solution to the long-object problem in helical
cone–beam tomography. Phys Med Biol 45(3) (Mar 2000) 623–643

12. Proksa, R., Köhler, T.and Grass, M.T.J.: The n-pi-method for helical cone-beam
CT. IEEE Transaction on medical imaging 19 (2000) 848–863

13. Bontus, C., Köhler, T., Proksa, R.: A quasiexact reconstruction algorithm for
helical CT using a 3Pi acquisition. Medical Physics 30(9) (Sep 2003) 2493–2502

14. Katsevich, A.: Theoretically exact FBP–type inversion algorithm for spiral CT.
SIAM Journal of Applied Mathematics 62 (2002) 2012–2026

15. Noo, F., Pack, J., Heuscher, D.: Exact helical reconstruction using native cone-
beam geometries. Phys Med Biol 48(23) (Dec 2003) 3787–3818

16. Bella, E.V.R.D., Barclay, A.B., Eisner, R.L., Schafer, R.W.: A comparison of
rotation-based methods for iterative reconstructionalgorithms. IEEE transactions
on nuclear science 43(6) (December 1996) 3370–3376

17. Owen, C.B., Makedon, F.: High quality alias free image rotation. In: Proceedings
of 30th Asilomar Conference on Signals, Systems, and Computers, Dartmouth
College Computer Science (November 1996)

18. Tosoni, L., Lanzavecchia, S., Bellon, P.L.: Image and volume data rotation with
1- and 3–pass algorithms. Comput Appl Biosci 12(6) (1996) 549–552

19. Knaup, M., Steckmann, S., Bockenbach, O., Kachelrieß, M.: CT image reconstruc-
tion using hexagonal grids. IEEE Medical imaging Conference Record M13–277

(2007) 2074–3076
20. Knaup, M., Kachelrieß, M.: Acceleration techniques for 2D parallel and 3D perspec-

tive forward and backprojections. In: 9th International Meeting on Fully Three-
Dimensional Image Reconstruction in Radiology and Nuclear Medicine. (2007)
45–48

21. Zeng, K., Bai, E., Wang, G.: A fast CT reconstruction scheme for a general multi-
core pc. Journal of Biomedical Imaging 2007(1) (2007) 1–9

22. Bi, W., Chen, Z., Zhant, L., Xing, Y.: Accelerate helical cone–beam CT with
graphics hardware. Proceedings SPIE 6913 (2008) published online

