Cone-Beam Flat Detector CT
incl. Rotational Angiography and Interventional CT

Marc Kachelrieß
German Cancer Research Center (DKFZ)
Heidelberg, Germany
www.dkfz.de
Terminology

• Confusing terminology
 – Wikipedia, the free encyclopedia, says “Rotational angiography is a medical imaging technique based on x-ray, that allows to acquire CT-like 3D volumes during hybrid surgery or during a catheter intervention using a fixed C-arm.”
 – In this sense, “rotational angiography” refers to the device used, i.e. a C-arm device, and not to angiography itself
 – “Angio” = 2D = projection imaging, “Rotational Angio” = 3D = tomographic imaging, both types of angio are more or less associated with the application of contrast agent
 – “DynaCT” is a Siemens implementation, but often the term is used as a synonym
 – Cone-beam CT is often associated with C-arm CT without contrast agent

• Cone-beam CT = CT with many detector rows
• Flat detector CT = CT with a flat detector of low aspect ratio
• C-arm CT = image intensifier- or flat detector-based cone-beam CT mounted on a C-arm
Interventional C-Arm CT

- There are fixed and mobile fluoroscopic (2D) and rotational (3D) systems available
- Cone-beam C-arm CT systems
 - Used for rotational angiography
 - Used for surgery
 - Used for neuro imaging
 - Therapeutic studies (line placements i.e. Permacath/Hickman, transjugular biopsies, TIPS stent, embolisations)
 - Cardiac studies (e.g. percutaneous coronary intervention)
 - Orthopedic procedures (ORIF, DHS, MUA, spinal work)
- Rotational angiography
 - Similar to diagnostic CTA, but in the intervention suite/cath lab
 - Angiography studies (peripheral, central and cerebral)
 - Detection and surgery of aneurysms
 - Placing of coils and stents
 - Detection of malformations, and of feeding vessels of malformations
- In general, the orthopedic procedures are carried out with a mobile C-arm because the workflow does not justify to dedicate an operation room to a fixed C-arm.
Clinical CT

e.g. Definition Flash dual source spiral cone-beam CT scanner, Siemens Healthcare, Forchheim, Germany.

Clinical CT is used for special types of interventions, such as needle biopsies and drainages, for example. They currently do not allow for 2D fluoroscopy. Compared to C-arm systems their form factor is not suitable to be used in the OR and the patient access is limited.
Fixed C-Arm CT

e.g. floor-mounted Artis Zeego or ceiling-mounted Artis Zee, Siemens Healthcare, Forchheim, Germany

Image courtesy by Siemens Healthcare
Mobile C-Arm CT

e.g. Vision FD Vario 3D, Ziehm Imaging GmbH, Nürnberg, Germany

Image courtesy by Ziehm Imaging
Typical Parameters

- Rotation speed: 30 to 100°/s
- Scan duration: 2 to 20 s
- Tube voltage: 40 to 110 kV
- Tube current: 20 to 80 mA (0.1 to 6 mA for fluoroscopy)
- Tube current time product: 0.1 to 160 mAs
- Typical patient dose values: 0.3 to 5 mSv
- Detector type: image intensifier or flat panel
- Detector size: 1024^2 to 4096^2
- Detector element size at isocenter: about 200 µm
- Volume size: 256^3 to 512^3
Detector: 1000×1000 to 4000×4000 elements, typically
Filtered Backprojection (FBP)

1. Filter projection data with the reconstruction kernel.
2. Backproject the filtered data into the image:

Reconstruction kernels balance between spatial resolution and image noise.
Feldkamp-Type Reconstruction

- **Approximate**
- **Similar to 2D reconstruction:**
 - row-wise filtering of the rawdata
 - followed by backprojection
- **True 3D volumetric backprojection along the original ray direction**
Cone-Beam Artifacts

Cone-angle $\Gamma = 6^\circ$

Cone-angle $\Gamma = 14^\circ$

Cone-angle $\Gamma = 28^\circ$

Defrise phantom

focus trajectory

Cone-angle Γ
- Anti-scatter grids are aligned to the detector pixels
- Anti-scatter grids reject scattered radiation
- Detector pixels are of about 1.2 mm size
- Detector pixels are structured, reflective coating maximizes light usage
- Thick scintillators improve dose usage
- Gd$_2$O$_2$S is a high density scintillator with favourable decay times
- Individual electronics allow for fast read-out
- Very high dynamic range can be realized

- Anti-scatter grids are not aligned to the detector pixels
- The benefit of anti-scatter grids is unclear
- Detector pixels are of about 0.2 mm size
- Detector pixels are unstructured, light scatters to neighboring pixels
- Thick scintillators decrease spatial resolution
- CsI grows columnar and suppresses light scatter to some extent
- Row-wise readout is rather slow
- Long read-out paths decrease the dynamic range
Detector Technology

Clinical CT Detector

Flat Detector

- Absorption efficiency
- Afterglow
- Dynamic range
- Cross-talk
- Framerate
- Scatter grid
Dose Efficiency of Flat Detectors

<table>
<thead>
<tr>
<th>Material</th>
<th>Clinical CT (120 kV)</th>
<th>Flat Detector CT (120 kV)</th>
<th>Micro CT (60 kV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gd$_2$O$_2$S</td>
<td>7.44 g/cm3</td>
<td>4.5 g/cm3</td>
<td>4.5 g/cm3</td>
</tr>
<tr>
<td>CsI</td>
<td>4.5 g/cm3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thickness</td>
<td>1.4 mm</td>
<td>0.6 mm</td>
<td>0.3 mm</td>
</tr>
<tr>
<td>Manufacturer</td>
<td>Siemens</td>
<td>Varian</td>
<td>Hamamatsu</td>
</tr>
<tr>
<td>Water Layer</td>
<td>0 cm, 20 cm, 40 cm</td>
<td>0 cm, 20 cm, 40 cm</td>
<td>0 cm, 4 cm, 8 cm</td>
</tr>
<tr>
<td>Photons absorbed</td>
<td>98.6%, 97.7%, 96.7%</td>
<td>80.0%, 69.8%, 62.2%</td>
<td>85.3%, 85.6%, 85.8%</td>
</tr>
<tr>
<td>Energy absorbed</td>
<td>94.5%, 91.4%, 88.7%</td>
<td>66.6%, 55.4%, 48.3%</td>
<td>67.1%, 65.2%, 64.2%</td>
</tr>
</tbody>
</table>

Absorption values are relative to a detector of infinite thickness.
Dynamic Range in Flat Detectors

<table>
<thead>
<tr>
<th>Table 2 4030CB dynamic range in available imaging modes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saturation-to-noise range</td>
</tr>
<tr>
<td>Electronic noise (ADU)</td>
</tr>
<tr>
<td>No binning, gain 2</td>
</tr>
<tr>
<td>Dynamic gain switching</td>
</tr>
<tr>
<td>0.5 pF fixed</td>
</tr>
<tr>
<td>4 pF fixed</td>
</tr>
<tr>
<td>2x2 binning, gain 1</td>
</tr>
<tr>
<td>Dual gain readout</td>
</tr>
<tr>
<td>Dynamic gain switching</td>
</tr>
<tr>
<td>0.5 pF fixed</td>
</tr>
<tr>
<td>4 pF fixed</td>
</tr>
<tr>
<td>0.5 pF fixed, gain 2 (fluoroscopy mode)</td>
</tr>
</tbody>
</table>

A2 is defined as the exposure where QuantumNoise=ElectronicNoise.

Table taken from [Roos et al. “Multiple gain ranging readout method to extend the dynamic range of amorphous silicon flat panel imagers,” SPIE Medical Imaging Proc., vol. 5368, pp. 139-149, 2004]. Additional values were added, for convenience.
Summary

• C-arm-based flat detectors are widely used for interventional CT imaging
• Due to today’s flat detector technology, neither dose efficiency nor image quality can compete with clinical CT
• Cone-beam artifacts will remain in C-arm CT, unless scan trajectories different from the half or full circle are implemented
• Patient access and system form factors are more favourable in C-arm systems compared to diagnostic CT systems
The Future of Interventional Imaging:
3D+T Imaging at 2D+T Dose

Courtesy of Dr. Sönke Bartling, Heidelberg, Germany.
The Future of Interventional Imaging: 3D+T Imaging at 2D+T Dose

Thank You!

marc.kachelriess@dkfz.de