Frequency-Combined Extended 3D Reconstruction for Multiple Circular Cone-Beam CT Scans

Rainer Grimmer¹, Jongduk Baek², Norbert Pelc², and Marc Kachelrieß¹,³

¹Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, Germany
²Stanford University, Palo Alto, USA.
³German Cancer Research Center (DKFZ), Heidelberg, Germany
Aim

• To provide a reconstruction method for cone-beam sequence scans with reduced noise and reduced cone-beam artifacts
Method A:
Extended Sequence Reconstruction1,2

- Slices farther from the midplane receive less than 360°
- Using also the slices where every voxel is seen at least 180° will increase the z-range.
- Increasing the z-range will also improve the dose usage.

2Grimmer, Berkus, Oelhafen, Kunz, Kachelrieß. IEEE MIC Record M13-207:3759-3763, October 2009
Method B: Combination in Frequency Domain

Rotation

Circle 1

Circle 2

Missing data in frequency space

No missing data in frequency space

Combined image: exact and higher SNR

Circle 1

Circle 2

Weighted average

xsfFDK

- Extended sequence scan frequency-combined Feldkamp (xsfFDK) reconstruction is a combination of
 - Method A and
 - Method B
Materials

• Simulation:
 – 1080 x 1080 detector with 0.5 mm square pixels
 – Cone angle 15°
 – FOM radius is 130 mm

• Varian OBI flat detector CT:
 – 1008 x 752 detector with 0.388 mm square pixels
 – Cone angle 11°
 – FOM radius is 130 mm

• VAMP TomoScope micro-CT:
 – 517 x 476 detector with 0.1 mm square pixels (reduced detector size)
 – Cone angle 6.5°
 – FOM radius is 20 mm
Simulation Study: Increased Overlap
Thorax Coronal

Averaged FDK

Proposed Method

C = 0; W = 300 HU
Simulation: Lower Cone-Beam Artifacts
Thorax sagittal

Averaged FDK

Proposed Method

C = 0; W = 300 HU
Measurement Study: Increased Overlap
Varian OBI Scanner

Averaged FDK

Proposed Method

C = 0; W = 500 HU
Image Noise in the Overlap Region
Varian OBI Scanner
Measurement Study
CTI TomoSope Scanner

Averaged FDK:

Proposed Method:

C = 0; W = 500 HU
Conclusions on xsFDK

• The extended sequence frequency-combined FDK algorithm provides
 – improved image quality in overlap regions
 » reduced cone-beam artifacts
 » reduced noise/dose
 – maintained image quality in non-overlapping regions

• The xsFDK technique can be used to increase the scan length in sequential CT without increasing the dose.
Thank You!

This study was supported by the AiF under grant KF2336201FO9. Parts of the reconstruction software were provided by RayConStruct® GmbH, Nürnberg, Germany