4D Guidance in Interventional Radiology: Prototype Development and Feasibility Study

Kuntz J¹, Sawall S², M. Socher¹, Semmler W¹, Kachelrieß M¹,² and Bartling SH¹,³

1. German Cancer Research Center (DKFZ), Heidelberg, Germany
2. Friedrich-Alexander-University Erlangen-Nürnberg, Germany
3. Institute for clinical radiology and nuclear medicine, University Medical Center, Mannheim, Germany
Introduction

Current X-ray intervention guidance

2D + time

3D manipulate and shoot
Introduction

4 D (3D +t) Intervention guidance

• Spatial relationships would always be clear
• Interventions would become faster and safer
• More complex interventions could be developed

But: It is currently not considered possible because of prohibitively high radiation doses

Aim: To suggest a solution to this and enable 4D intervention guidance
Introduction

Conventional tomographic data acquisition

Compressed sensing (CS)

Tomographic reconstruction for 4D intervention guidance

Full dose prior

Low dose time frames

Iterative CS reconstruction

Material & Methods

- Phantom and pig (n=5) experiments
- Simulated catheter interventions
- 3D angiographic road mapping through arterial contrast media injection
- Continuous flat-panel data acquisition
- Retrospective dose reduction
- Compressed sensing reconstruction (incl. custom developed PRIDICT (Prior image dynamic interventional CT algorithm))
- Dose comparison to fluoroscopy
Results

Prior scan (FDK)
Full dose time frame (FDK)
Low dose time frame (FDK)

Simulated radiation dose reduction
Dose similar to X-ray fluoroscopy
Results

Prior scan (FDK) Full dose time frame (FDK) Low dose time frame (FDK)

Simulated radiation dose reduction
Dose similar to X-ray fluoroscopy

4D intervention guidance using compressed sensing

ASD-POCS PICCS PRIDICT
Results

Dose comparison

X-ray fluoroscopy (2D + t):

21 \mu Gy/s

4D Intervention guidance (3D + t):

47 \mu Gy/s

CTDI-Phantom

Artis Zee,
Zero magnification
7.5 frames/s,
Biplane
Exposure automatic

VCT
1 volumes/s
18 cm z coverage
80kV, 50 mA,
17 projections
Added noise
Results

Guide wire in pig carotis

anterior-posterior

lateral

t
Results

Guide wire in pig carotis + Angio

anterior-posterior

lateral

t
Results

Guide wire in pig carotis + Angio
Results

Unfolding stent in pig carotid
Results

Unfolding stent in pig carotid + Angio

16 low dose projections
47 μGy/s
1 frame/s
Conclusion

- Using compressed sensing algorithms, sparse sampling and prior knowledge 4D intervention guidance is realistic without exceeding acceptable dose levels.
- This initial results suggest that this approach is promising and worth to pursue.
- The potential impact on intervention guidance and minimal-invasive medicine is high.