A Count Rate-Dependent Method for Spectral Distortion Correction in Photon Counting CT

Joscha Maiera,d, Jannis Dickmanna,b,c, Stefan Sawalla,d, Thomas Thüringe, Spyridon Gkoumase, Christian Brönnimanne, and Marc Kachelrießa,d

aGerman Cancer Research Center (DKFZ), Heidelberg, Germany
bKTH Royal Institute of Technology, Stockholm, Sweden
cTechnical University of Darmstadt, Germany
dUniversity of Heidelberg, Germany
eDectris Ltd., Baden, Switzerland

www.dkfz.de/ct
Aim

- Material decomposition of spectral CT data into contributions of two or more materials
- Rawdata-based material decomposition requires dedicated models to predict the measured counts
- Calibration of spectral response to account for...
 - Spectral distortions: charge sharing, K-escape
 - Count rate-dependent distortions: pulse pileup
Material Decomposition

Cost-function: Log Likelihood

Forward Model

$N_b(l_1, \ldots, M)$

Update

Forward Model

- The detection process of a PCD is described using the bin sensitivity function $S_b(E)$.

\[N_b(l_1, ..., M) \propto N_0 \int dE \ w(E) \cdot S_b(E) \cdot \exp \left(- \sum_{m=1}^{M} \mu_m(E) \cdot l_m \right) \]

- Total number of x-rays
- X-ray spectrum
- Bin sensitivity
- Interaction with the sample
The detection process of a PCD is described using the bin sensitivity function $S_b(E)$.

$$N_b(l_1,\ldots,l_M) \propto N_0 \int dE \ w(E) \cdot S_b(E) \cdot \exp \left(- \sum_{m=1}^{M} \mu_m(E) \cdot l_m \right)$$
• The detection process of a PCD is described using the bin sensitivity function $S_b(E)$.

$$N_b(l_1,\ldots,l_M) \propto N_0 \int dE \ w(E) \cdot S_b(E) \cdot \exp \left(- \sum_{m=1}^{M} \mu_m(E) \cdot l_m \right)$$
The detection process of a PCD is described using the bin sensitivity function $S_b(E)$.

$$N_b(l_1,\ldots,l_M) \propto N_0 \int dE \ w(E) \cdot S_b(E) \cdot \exp\left(-\sum_{m=1}^{M} \mu_m(E) \cdot l_m\right)$$

Calibration Measurements

• Measure **transmission** through slabs of aluminum and POM

• Adapt forward model such that it reproduces the calibration measurement
Calibration
Reference Methods

• Method 1 by Liu et al. (2015)

\[N_b(l_1,\ldots,M) \propto N_0 \cdot C_b \left(\int dE \ w(E) \cdot S_b(E) \cdot \exp \left(-\sum_{m=1}^{M} \mu_m(E) \cdot l_m \right) \right) \]

\[C_b(N) = \frac{\alpha_b + \beta_b \cdot N}{1 + \gamma_b \cdot N} \]

• Method 2 by Sidky et al. (2005)

\[N_b(l_1,\ldots,M) \propto N_0 \cdot \int dE \ w(E) \cdot S_b(E) \cdot \exp \left(-\sum_{m=1}^{M} \mu_m(E) \cdot l_m \right) \]

\[= w_b(E) \]

Count Rate-Dependent Spectral Calibration

- Include a multiplicative correction function $P_b(E, N_b)$ to account for spectral distortions and effects depending on the count-rate N_b.

$$N_b(l_1, \ldots, M) \propto N_0 \int dE \ w(E) \cdot S_b(E) \cdot P_b(E, N_b) \cdot \exp \left(- \sum_{m=1}^{M} \mu_m(E) \cdot l_m \right)$$

- Model the correction function as a polynomial of order K:

$$P_b(E, N_b) = 1 + (E - E_{\text{min}})(E - E_{\text{max}}) \cdot \sum_{k=0}^{K-2} c_{kb}(N_b) E^k$$

where the coefficients depend linearly on the count-rate:

$$c_{kb}(N_b) = c_{kb}^{(0)} + c_{kb}^{(1)} \cdot N_b$$
Count Rate-Dependent Spectral Calibration

\[w_b(E) = w(E) \cdot S_b(E) \]
Count Rate-Dependent Spectral Calibration

![Graph showing count rate-dependent spectral calibration with energy in keV and count rate values in bins.](image-url)
Count Rate-Dependent Spectral Calibration

- **Count Rate**
- **Dependent**

Spectral Calibration

- **Energy / keV**
 - Bin 1
 - Bin 2
 - Bin 3
 - Bin 4

Energy / keV

- 10
- 20
- 30
- 40
- 50
- 60
- 70
- 80
- 90
- 100
Simulation Study

- Material decomposition into iodine and water
- Spectrum 80 kV, 6 mm Al prefiltration

a) Distorted bin sensitivity function for decomposition

b) Simulated pulse pileup for paralyzable detector and rectangular shaped pulses

Simulation Study

Ground Truth

With pulse pileup

Ideal Distorted

Ref. 1 (Liu)

Ref. 2 (Sidky)

Prop. Meth.

C = 0 mg/mL, W = 4 mg/mL
Phantom Measurements

- QRM dual energy phantom DEP-002.
- Reference concentration determined with Siemens Somatom Definition Flash scanner.

Phantom Measurements

- Iodine ROI: 21.5 mg/mL
- Water ROI: 0.6 mg/mL

Diagram

- Water
- Iodine
- Calcium

Image

- QRM-DEP-002 Dual Energy Phantom
- 2 cm scale

Image Caption

- Iodine ROI: 21.5 mg/mL
- Water ROI: 0.6 mg/mL
Table-Top Photon Counting CT

Dectris Santis prototype with sample

Rotation stage

X-ray Source

Pixel: 512 x 256
Pixel size: 150 x 150 µm²
Sensor thickness: 1.0 mm CdTe
Phantom Measurements

<table>
<thead>
<tr>
<th></th>
<th>No Calibration</th>
<th>Ref. 1</th>
<th>Ref. 2</th>
<th>Prop. Method</th>
</tr>
</thead>
<tbody>
<tr>
<td>Iodine</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Water (VNC)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- $C = 10 \text{ mg/mL}$, $W = 40 \text{ mg/mL}$
- $C = -500 \text{ HU}$, $W = 2000 \text{ HU}$
Phantom Measurements

Deviation from Reference Scan

- No Calib.: 75.4%
- Ref. 1: 16.7%
- Ref. 2: 6.57%
- Prop. Meth.: 1.86%

C = 10 mg/mL, W = 40 mg/mL
C = -500 HU, W = 2000 HU
Conclusions

• The **count rate-dependent spectral calibration** can accommodate both for spectral distortions and count rate-dependent effects.

• In measurements, **artifacts** in material images were down to noise level.

• Agreement with clinical CT system within 2% for iodine quantification.
Thank You!

The 6th International Conference on Image Formation in X-Ray Computed Tomography

July/August, 2020, Regensburg, Germany
www.ct-meeting.org

Conference Chair: Marc Kachelriß, German Cancer Research Center (DKFZ), Heidelberg, Germany

This presentation will soon be available at www.dkfz.de/ct.

Job opportunities through DKFZ’s international Fellowship programs (marc.kachelriess@dkfz.de).
Parts of the reconstruction software were provided by RayConStruct® GmbH, Nürnberg, Germany.
The prototype photon-counting x-ray detectors were provided by Dectris Ltd., Baden, Switzerland.