Introduction
Accurate quantification in PET requires attenuation correction (AC) for both patient and hardware attenuation of the 511 keV annihilation photons. In hybrid PET/MR imaging, AC for stationary hardware components such as patient table and MR head coil is relatively straightforward using CT-derived attenuation templates. AC for flexible hardware components such as MR surface coils and MR-safe pneumatic headphones is more challenging. Registration-based approaches, aligning transmission-based attenuation templates with the current patient position, have been proposed but are not used in clinical routine. Neglecting headphone attenuation has been shown to result in local brain activity underestimation values of up to 15%. In this study, we propose a method to estimate headphone attenuation employing a modified maximum-likelihood reconstruction of attenuation and activity (MLAA) algorithm. The proposed method is evaluated for both phantom and patient data acquired with a Siemens Biograph mMR (Siemens Healthineers, Erlangen, Germany).

Materials and Methods
Algorithm: The MLAA algorithm is used to simultaneously estimate attenuation and activity distributions from the PET emission data. Compared to the original MLAA algorithm, our implementation applies the attenuation update only outside the patient body outline, i.e., the patient attenuation map is not modified. The region where the attenuation update is applied, i.e., where the headphones are assumed to be located, is defined by the so-called hardware mask, which is physically confined by the MR head coil. Prior terms in the cost function favor smooth attenuation maps and the occurrence of either air ($\mu = 0.0$ mm$^{-1}$) or headphone material ($\mu = 0.01$ mm$^{-1}$). More details on the MLAA update equations and the prior terms can be found in references 1 and 2.

Phantom Data: We used a 15 cm diameter PMMA cylinder filled with 5 L water and 48 MBq 82Rb. A pair of MR-safe pneumatic headphones was securely fixed to the phantom using adhesive tape. The phantom with the headphones attached was placed inside the MR head coil and PET data were acquired (59×105 prompt events). With the headphones still in identical position, the phantom was scanned with a clinical CT system after the activity had been decayed the next day. To obtain a CT-based attenuation template, the CT image with and without head-phones was converted to 511 keV applying bilinear scaling. For headphone attenuation estimation, we applied MLAA as described above, performing 50 iterations, i.e., 50 activity and attenuation updates. In a second attempt, we only applied a single MLAA iteration, segmented the headphones and applied pre-defined attenuation coefficients ($\mu_h = 0.005$ mm$^{-1}$ (MLAA Seg 1) or $\mu_h = 0.033$ mm$^{-1}$ and $\mu_h = 0.0009$ mm$^{-1}$ (MLAA Seg 2)).

Results

Phantom Data: We investigated three 18F-FDG patients wearing headphones during data acquisition. Administered activity was 227±16 MBq. Only PET data from the bed position corresponding to the head region were considered. The vendor-provided MR-based attenuation map was used for patient AC. As for the phantom data, the MLAA attenuation update for headphone attenuation estimation was applied outside the patient body outline but within the head coil. Final reconstructions were performed for the uncorrected case neglecting headphone attenuation and for MLAA-based headphone attenuation estimation employing an OSEM algorithm with 3 iterations and 21 subsets. Neither a reference scan nor CT-based attenuation templates were available for comparison.

Conclusion
This study demonstrates the feasibility of applying MLAA for accurate headphone attenuation estimation. The proposed approach can also be applied for other hardware components located within the PET field-of-view, such as MR surface coils or positioning aids. Since MLAA is already implemented in current clinical PET/MR devices, the proposed approach can, in principle, be readily included into clinical workflow.

Acknowledgements
This study was supported by the Helmholtz International Graduate School for Cancer Research, Heidelberg, Germany. Parts of the reconstruction software were provided by RayConStruct® GmbH, Nürnberg, Germany. Job opportunities through DKFZ’s international PhD or Postdoctoral Fellowship programs (www.dkfz.de), or directly through Marc Kachelriess (marc.kachelriess@dkfz.de).