Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.
Statistics

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

Starving Tumors: New Target Discovered

No. 02c | 22/01/2018 | by Doy

Actively growing tumors have a high demand for oxygen and nutrients. Therefore, they stimulate the growth of blood vessels. This process is called angiogenesis. If tumor-associated angiogenesis is suppressed, this may limit tumor growth. Scientists from the German Cancer Research Center and the European Center for Angioscience at Heidelberg University have now discovered a new target for anti-angiogenic tumor therapy. They show that the deletion of a signaling molecule in mice leads to the formation of less blood vessels in late-stage tumors. This delays their growth and limits the formation of metastases.

The microscopic analysis reveals a dense network of blood vessels in a growing tumor.
© La Porta, DKFZ

Like all cells in our body, cancer cells require nutrients and oxygen, which are delivered by blood vessels. Since cancer cells divide particularly fast, new blood vessels need to grow rapidly and in an uncontrolled fashion into the tumor. Blocking this process could limit tumor growth. Scientists in the laboratory of Hellmut Augustin have now shown that the receptor Tie1 plays a crucial role in angiogenesis. Tie1 is expressed by endothelial cells, the cells lining the inside of all blood vessels. Tie1 interacts with other signaling molecules and thereby controls the growth of blood vessels.

Tie1 is overexpressed in the vasculature of tumors. This contributes to the growth of blood vessels and enables tumor growth. Surprisingly, the growth promoting effect of Tie1 occurs only at later stages of tumor growth. In genetically engineered mice, whose endothelial cells could not express Tie1, tumors growth was initially unaltered. Yet, after two weeks, when tumors had grown to substantial size, their growth in mice without Tie1 was remarkably slowed. This could be an advantage for the later clinical exploitation of Tie1 as a therapeutic target: "Tumors are mostly diagnosed in patients, when they are fairly advanced in their evolution" explains Augustin. "It is therefore particularly important to identify therapeutic targets that are active at later stages of tumor growth, as demonstrated here for Tie1."

Targeting of Tie1 has another positive effect: It stabilizes the walls of the blood vessels and thereby prevents the formation of metastases. Metastases are responsible for the majority of cancer deaths. Such secondary tumors arise when cancer cells leave the primary tumor, enter into the bloodstream, and then reach distant organs. They can stay dormant at the secondary site for weeks or even years, before they again start to divide to grow a metastasis. "We deleted Tie1 genetically to block tumor growth and metastasis", explains Silvia La Porta, the study's lead scientist. "Next, we will study, if blocking of Tie1 by a drug has the same beneficial effect".

As shown in the study, following surgical removal of the primary tumor, 10 out of 14 normal control mice developed metastases. In mice without Tie1, only 1 out of 14 animals had metastases.

The exact mechanism of action of Tie1 is still the subject of intensive research. The molecule is a so called orphan receptor, which means that it is a receptor for which there is no known binding partner. Future studies will need to shed light into Tie1's enigmatic functions.

The concept of blocking angiogenesis is not novel. In 2004, the drug Bevacizumab (Avastin) received clinical approval. It limits tumor growth by blocking the angiogenic factor vascular growth factor (VEGF). The efficacy of Bevacizumab is, however, limited. That's why scientists are intensely studying second generation anti-angiogenic targets that could be used in combination therapy to improve the efficacy of anti-angiogenic intervention.

The pharmaceutical industry has in recent years intensely studied Angiopoietin2 as a therapeutic target. Clinical studies with Angiopoietin2 blocking drugs yielded, however, disappointing results. Unlike Tie1, Ang2 affects primarily the early stages of tumor development, which could be one of the reasons for its limited clinical efficacy. Given that Tie1 targets a different therapeutic window, future studies will need to show if it could prove to be a better therapeutic target.

Silvia La Porta, Lise Roth, Mahak Singhal, Carolin Mogler, Carleen Spegg, Benjamin Schieb, Xianghu Qu, Ralf H. Adams, H. Scott Baldwin, Soniya Savant, and Hellmut G. Augustin: Endothelial Tie1–mediated angiogenesis and vascular abnormalization promote tumor progression and metastasis. Journal of Clinical Investigation 2018, DOI: 10.1172/JCI94674.

A picture is available for download:
http://www.dkfz.de/de/presse/pressemitteilungen/2018/bilder/PM-JCI-LaPorta-et-al.jpg

Caption: The microscopic analysis reveals a dense network of blood vessels in a growing tumor.

Note on use of images related to press releases
Use is free of charge. The German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) permits one-time use in the context of reporting about the topic covered in the press release. Images have to be cited as follows: "Source: La Porta, DKFZ".
Distribution of images to third parties is not permitted unless prior consent has been obtained from DKFZ's Press Office (phone: ++49-(0)6221 42 2854, E-mail: presse@dkfz.de). Any commercial use is prohibited.

Link to the Video Abstract

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS