Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.
Statistics

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

Heidelberg Virologists Make HIV Luminate

No. 09 | 24/02/2005 | by (Brc/JR)

A working group of virologists headed by Professor Hans-Georg Kräusslich at Heidelberg University Hospitals, jointly with Professor Hanswalter Zentgraf, Division of Applied Tumor Virology of the Deutsches Krebsforschungszentrum (German Cancer Research Center, DKFZ), have been the first to label Human Immunodeficiency Viruses (HIV) for visual investigations without inhibiting the functional characteristics of the virus. The labeling permits scientists to observe the behavior of the virus when it enters a host cell, during replication and when it leaves a cell. This is a major step towards understanding the process of HIV infection.

Modern imaging technologies facilitate real-time observation of virus-cell interactions. Many of these investigation methods require labeling of the object of interest, such as by introducing the genetic code of green fluorescent protein (GFP) into its genetic information. There the marker protein will be produced by the cellular machinery and appended to the desired site.

To observe the interaction of HIV with the host cell, there had also been attempts to label the virus with GFP. However, the genetic modifications impaired the formation of virus particles or their infectiousness, thus limiting the value of results obtained. A team of Heidelberg researchers of the university hospitals’ Virology Section and the DKFZ have now found an area within the structure molecule of the viral capsid that tolerates the substantial extension by GFP. Although the insertion of the GFP molecule enlarges the HIV structure protein by about one half, infectious viruses continue to be generated. Using electron microscopy, Zentgraf’s team was able to show that appearance and shape of the virus particles thus created cannot be distinguished from normal HIV. By simultaneous production of GFP-extended and normal structure protein, PD Dr. Barbara Müller was able to produce, under a fluorescence microscope, clearly visible HIVs with several thousand GFP molecules that were as infectious as HIV without GFP. This is an essential step towards a better understanding of the dynamics of HIV infection.

Barbara Müller, Jessica Daecke, Oliver T. Fackler, Matthias T. Dittmar, Hanswalter Zentgraf, Hans-Georg Kräusslich: Construction and characterization of a fluorescently labeled infectious Human Immunodeficiency Virus Type 1 derivative. Journal of Virology Vol. 78 Nr. 19, Oct. 2004.

Michael Eisenstein: Fluorescent virus lets researchers in on the gag. Nature Methods Vol. 1 Nr. 2, Nov. 2004.

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS