Table of Contents

Explanatory Notes .. 4

Ca 1 E. Winocour/G. Sauer ... 5
Ca 2 L. Sachs/W. Franke ... 5
Ca 3 M. Schlesinger/W. Dröge .. 6
Ca 4 R. Laskov/K. Eichmann .. 7
Ca 5 F. Doljanski/V. Kinzel ... 7
Ca 7 E. Shaaya/E. Sekeris ... 8
Ca 8 J. Haimovich/P. Krammer .. 8
Ca 9 S. Lavi, E. Winocour/G. Sauer ... 10
Ca 11 T. Mekori, E. Robinson/H. Kirchner, E. Storch ... 11
Ca 12 D. Suliteanu/M. Zoller, S. Matzku ... 11
Ca 13 A. J. Treves, S. Biran/W. Dröge, V. Schirrmacher 12
Ca 14 E. Pick/D. Gemsa, H. Kirchner ... 12
Ca 15 D. Givol, P. Lonai/K. Eichmann ... 14
Ca 16 R. Ben-Ishai/H. W. Thielmann ... 15
Ca 17 R. Simantov/F. Marks .. 15
Ca 18 S. Segal, E. Gorelik/G. Hämmerling, V. Schirrmacher 16
Ca 19 E. Canaani/T. Graf ... 17
Ca 20 M. Herzberg/D. Werner, K. Munk ... 17
Ca 21 J. Kapitulnik, R. Koren/F. Kolar, N. Fusenig .. 18
Ca 22 B. Geiger/W. Franke ... 18
Ca 23 U. Z. Littauer, I. Ginzburg/H. Ponstingl ... 19
Ca 24 I. Vlodavsky/V. Schirrmacher ... 20
Ca 25 S. Shaltiel/V. Kinzel, M. Gagelmann ... 22
Ca 26 A. Panet/H. Kirchner, H. Jacobsen ... 24
Ca 27 M. Bar-Eli/G. Hämmerling ... 24
Ca 28 R. Kaempfer/P. Krammer ... 25
Ca 29 A. Raz, A. Ben-Ze'ev/M. Zöller ... 27
Ca 30 V. Rotter/V. Schirrmacher ... 28
Ca 31 S. Mitrani-Rosenbaum/L. Gissmann ... 29
Ca 32 S. Lavi/J. Schlehofer .. 29
Ca 33 Y. Milner/M. Hergenhahn ... 30
Ca 34 J. Schlessinger/V. Kinzel, F. Marks ... 30
Ca 35 H. Manor/M. Pawlita .. 31
Ca 36 B. Czernobilsky/W. Franke ... 31
Ca 37 I. Friedberg/D. Kübler, W. Pyerin ... 33
Ca 38 Y. Kaufman/W. Falk, P. Krammer ... 34
Ca 39 M. Revel, J. Chebath/R. Zawatzky, H. Kirchner .. 35
Ca 40 J. Kark/J. Wahrendorf .. 36
Ca 41 D. Wallach/H. Holtmann, D. Männel ... 36
Ca 42 G. Berke/W. Dröge ... 38
Ca 43 E. Kedar/V. Schirrmacher .. 39
Ca 44 R. N. Apte/M. Zöller .. 39
Ca 45 P. Rozen/H. Boeing ... 40
Ca 46 A. Ben-Ze'ev/J. Kartenbeck, W. Franke .. 41
Ca 47 Y. Shiloh/A. Weith, M. Schwab .. 43
Ca 48 J. Tal/J. Schlehofer ... 44
Ca 49 B. Geiger/W. Franke .. 44
Ca 50 M. Aboud/M. Lochelt, R. Flügel ... 46
Ca 51 M. Oren/R. Corvi, M. Schwab .. 47
Ca 52 H. Degani, Y. Salomon/W. Lehmann, W. E. Hull .. 48
Ca 53 S. A. Lamprecht/G. Fürstenberger, F. Marks ... 49
Ca 54 M. Liscovitch/V. Kinzel .. 49
Ca 55 J. Bar-Tana/D. Keppeler .. 50
Ca 56 I. Ginzburg/H. Ponstingl ... 52
Ca 57 G. Neufeld/R. Schwartz-Albiez (V. Schirrmacher) 53
Ca 58 E. Keshet/E. Spiess .. 53
Ca 59 A. Kimchi/N. Fusenig .. 54
Ca 60 S. Lavi/R. Heilbronn, J. Kleinschmidt 55
Ca 61 V. Rotter/K.H. Richter (F. Marks) 55
Ca 62 B.-Z. Shilo/B. Mechler ... 55
Ca 64 S. Segal/F. Momburg (G. Hämmerling) 56
Ca 65 U. Zor, R. Goldman/G. Fürstenberg, F. Marks 57
Ca 66 R. Apte/M. Zöller ... 58
Ca 67 G. Berke/P. Krammer ... 60
Ca 68 L. Eisenbach/M. Zöller ... 61
Ca 69 I. Witz/V. Schirrmacher ... 63
Ca 70 Y. Ben-Neriah/W. Dröge ... 63
Ca 71 Z. Fishelson/M. Kirschfink .. 64
Ca 72 Y. Shaul/Ch. Schröder ... 65
Ca 73 L. Sherman/M. Dürst ... 66
Ca 75 Y. Groner/M. Schwab ... 66
Ca 76 A. Hochberg/D. Komitowski 67
Ca 77 N. Arber/W. Pyerin .. 69
Ca 78 R. Bar-Shavit/P. Altevogt (V. Schirrmacher) 70
Ca 79 A. Ben-Ze'ev, B. Geiger/W. Franke 71
Ca 80 E. Canaan/R. Paro .. 72
Ca 81 A. Ciechanover/M. Scheffner 73
Ca 82 I. Friedberg/D. Kübler (V. Kinzel) 73
Ca 83 A. Levitzki/F. Roesl .. 74
Ca 84 A. Panet/K.-M. Debatin ... 74
Ca 85 A. Kimchi/M. Schwab ... 74
Ca 86 M. Oren/P. Krammer ... 75
Ca 87 E. Razin/P. Angel ... 76
Ca 88 G. Golomb/R. Berger .. 72
Ca 89 E. Keshet/N.E. Fusenig ... 77
Ca 90 I. Vlodavsky/V. Schirrmacher 78
Ca 91 Z. Fishelson/M. Kirschfink 78
Explanatory Notes

The following is an updated list of publications that have resulted from the joint projects carried out within the framework of the German-Israeli Cooperation Program in Cancer Research during the first 28 years of the Program, 1976 - 2004. The list of publications was originally intended to serve as a Bibliographic Supplement to the anniversary brochure entitled "German-Israeli Cooperation in Cancer Research: The First 20 Years", jointly issued by the Deutsches Krebsforchungszentrum (DKFZ) and the Israeli Ministry of Science (MOS). The list includes papers published in refereed journals, as well as articles and lectures published in books, but excluding conference abstracts and posters.

The 91 joint projects which have been successfully concluded during the period 1976 - 2002 are listed here according to their serial Ca-number, followed by the names and institutional affiliations of the Israeli and German partners. For each project, publications are listed in chronological order. Some publications have resulted from more than one project and therefore appear in the list more than once. However, in the overall statistics, such publications have been counted only once.

Of the 829 publications included in the list, 387 publications have resulted from the Israeli subprojects, 299 from the German subprojects, and 143 are joint publications co-authored by the Israeli and German partners. The joint publications are marked by an asterisk (*).

The Supplement of 1999 was updated to the present version in Spring 2005 covering now projects Ca 1 – Ca 91.
Ca 1 E. Winocour, Weizmann Institute of Science, Rehovot
G. Sauer, DKFZ, Heidelberg

1. **Gluzman Y, Davidson J, Oren M and Winocour E**
 Properties of permissive monkey cells transformed by UV-irradiated simian virus 40
 J.Virol. 22, 256-266 (1977)

2. **Gluzman Y, Kuff EL and Winocour E**
 Recombination between endogenous and exogenous Simian virus 40 genes. I. Rescue of
 Simian virus 40 temperature-sensitive mutant by passage in permissive transformed
 monkey lines
 J.Virol. 24, 534-540 (1977)

3. **Vogel T, Gluzman Y and Winocour E**
 Recombination between endogenous and exogenous Simian virus 40 genes. II. Biochemical
 evidence for genetic exchange
 J.Virol. 23, 541-550 (1977)

4. **Winocour E, Oron M, Lavi S, Vogel T and Gluzman Y**
 Recombination events between Simian virus 40 and the host genome
 In "Genetic Manipulation as it affects the Cancer Problem", J. Schultz, and Z. Brada, eds,

5. **Orn M, Lavi S and Winocour E**
 The structure of a cloned substituted SV40 genome
 Virology 85,404-421 (1978)

6. **Hartman JR, Laub O, Aloni Y and Winocour E**
 Transcription of the cellular DNA sequences in a cloned host-substituted SV40 DNA variant
 Virology 94, 84-92 (1979)

7. **Vogel T, Gluzman Y and Kohn N**
 Altered restriction endonuclease cleavage pattern of SV40 DNA
 J.Virol. 29, 153 (1979)

8. **Vogel T**
 Recombination between endogenous and exogenous Simian virus 40 genes. III. Rescue of
 SV40 tsA and tsBC mutants by passage in permissive transformed monkey lines
 Virology 104, 73-83 (1980)

 The rapid detection, isolation and amplification of host-substituted SV40 variants

10. **Winocour E, Keshet I, Nedjar G and Vogel T**
 Origins of SV40 genetic variation

11. **Winocour E and Keshet I**
 Indiscriminate recombination in SV40-infected monkey cells

 The integrated SV40 genome in permissive transformed monkey cells

Ca 2 L. Sachs, Weizmann Institute of Science, Rehovot
W. Franke, DKFZ, Heidelberg

1. **Lotem J and Sachs L**
 Genetic dissection of the control of normal differentiation in myeloid leukemic cells
2. Lotem J and Sachs L
In vivo induction of normal differentiation in myeloid leukemic cells

3. Sachs L
Control of normal cell differentiation and the phenotypic reversion of malignancy in myeloid leukemia
Nature 274, 535-539 (1978)

4. Simantov R and Sachs L
Differential desensitization of functional adrenergic receptors in normal and malignant myeloid cells. Relationship to receptor mediated hormone cytotoxicity

5. Simantov R and Sachs L
Cytoskeleton regulated B-adrenergic hormonal stimulation in normal and leukemic white blood cells

6. Sachs L
Diagnostic and therapeutic implications of cell cultures for human leukemia

7. Lotem J and Sachs L
Regulation of normal differentiation in mouse and human myeloid leukemic cells by phorbol esters and the mechanism of tumor promotion

8. Symonds G and Sachs L
Activation of chemotaxis in relation to other stages of normal differentiation in myeloid leukemia

Ca 3 M. Schlesinger, Hebrew University of Jerusalem
W. Dröge, DKFZ, Heidelberg

1. Prebluda JL, Melmed RN, Rabinowitz R, and Schlesinger M
The relationship between cholera toxin receptor and the Thy-1 antigen determinants

2. Schlesinger M and Kertes T
The formation of stable E-rosettes by human pripheral blood lymphocytes after short exposure to concanavalin A

3. Lobet S, Rabinowitz R and Schlesinger M
Mechanisms involved in the weak alloimmunogeneity of Thy-1 on mouse brain
Transplantation 28, 329-332 (1979)

4. Rabinowitz R, Laskov R and Schlesinger M
The effect of xenoantisera on T-lymphocyte functions in the absence of complement

5. Rabinowitz R and Schlesinger M
Inhibition of the activity of cytotoxine murine T-lymphocytes by antibodies to idotypic determinants
Immunology 39, 93-99 (1980)
6. Rabinowitz R, Laskov R and Schlesinger M
Inhibition of cell-mediated lysis by xenoantibodies reactive with effector T-lymphocytes

7. Rabinowitz R and Schlesinger M
Reactivity of rat anti-Thy-1 serum with peripheral mouse T-lymphocytes
Transplantation 29, 173-174 (1980)

8. Rabinowitz R and Schlesinger M
Relationship of Ly-3 and idiotypic determinants to the T-cell receptor

9. Schlesinger M, Rabinowitz R, Kertes T, Ravid L and Goldblum N
Antibodies to human T-lymphocytes in xenoantisera elicited with a new immature T-cell line
(Peer)
Thymus 2, 235-243 (1981)

Ca 4 R. Laskov, Hebrew University of Jerusalem
K. Eichmann, DKFZ, Heidelberg

1. Wallach M and Laskov R
A high production rate of translatable IgG mRNA accounts for the amplified synthesis of IgG
in myeloma cells

2. Wallach M, Yeshai-Michaeli R, Givol D and Laskov R
Analysis of immunoglobulin mRNA in murine myeloma cell variants defective in synthesis of
the light or heavy polypeptide chains

Ca 5 F. Doljanski, Hebrew University of Jerusalem
V. Kinzel, DKFZ, Heidelberg

1. Plesser YM, Doljanski F and Polliack A
Alteration in lymphocyte surface morphology and membrane fluidity induced by cholesterol
depletion

2. Plesser YM, Weiss W, Markson Y and Doljanski F
Expression and shedding of major histocompatibility complex products and blood group
antigens by cells in monolayer cultures

3. Plesser YM, Weiss DW und Doljanski F
Cell-surface shedding by fibroblasts in culture

4. Doljanski F
Cell surface shedding

5. Kübler D, Pyerin W and Kinzel V
Protein kinase activity and substrates at the surface of intact Hela cells

6. Kübler D, Pyerin W, and Kinzel V
Assays of cell surface protein kinase: Importance of selecting cytophilic substrates
Substrate-effected release of surface-located protein kinase from intact cells

Ca 7 E. Shaaya, Hebrew University of Jerusalem
E. Sekeris, DKFZ, Heidelberg

1. Shaaya E
Differential effect of ecdysone on RNA synthesis in the epidermal cells of Calliphora during development
Gen.Comp.Endoc. 34, 110 (1978)

2. Shaaya E
Synthesis of giant HnRNA in the epidermal cells of Calliphora and the role of the ring gland
Hoppe-Seyler's Z.Physiol.Chem. 360, 445-449 (1979)

Ca 8 J. Haimovich, Tel Aviv University
P. Krammer, DKFZ, Heidelberg

1. Blatt C and Haimovich J
The selective effect of tunicamycin on the secretion of IgM and IgG produced by the same cells

2. Marcucci F, Waller M, Kirchner H and Krammer PH
Production of immune interferon (IFN-γ) by murine T cell clones from long term cultures

3. Waller M, Marcucci F, Kirchner H, Michnay A and Krammer PH
A simple method for cryopreservation of murine T cell clones from long term cultures

4. Krammer PH, Marcucci F, Waller M and Kirchner H
Heterogeneity of soluble T cell products. I. Precursor frequency and correlation analysis of cytotoxic and immune interferon (IFN-γ) producing spleen cells in the mouse

5. Krammer PH and Michnay A
Heterogeneity of soluble T cell products. III. Frequency of T cell growth factor producing murine spleen cells

Production of colony stimulating factors by murine T cells in limiting dilution and long term cultures

7. Krammer PH, Kees U, Marcucci F and Kirchner H
Immune interferon production by T cell clones
In "Interferon", Munk, K, Kirchner, H: (eds.) Contributions to Oncology 2, 144-149 (1982)

8. Kirchner H, Marcucci F, Zawatzky R and Krammer PH
The producer cells of interferon in murine lymphocyte cultures

The Producer cell of Interferon in murine lymphocyte cultures
In "The Interferon System. A review to 1982 - Part I. Texas Reports on Biology and Medicine", Vol. 41, 1981-1982 (Baron, S, Dianzani, F, Stanton, J, eds.) The University of Texas Medical Branch at Galveston, pp. 89-93

10. Marcucci F, Kirchner H and Krammer PH
Production of interferon-γ (IFN-γ) and IFN-α/β by a mouse lymphocyte clone from long term cultures in T cell growth factor

11. Pawelec G, Borowitz A, Krammer PH and Wernet P
Constitutive interleukin-2 production by the Jurkat human leukaemic T cell line

Clonal analysis of helper and cytolytic T cells. Multiple, independently regulated precursor sets at frequencies suggesting a limited repertoire

Production of lymphokines by murine T cells grown in limiting dilution and long term cultures

T cell derived B cell differentiation factors. Effect on the isotype switch of murine B cells

15. Krammer PH, Kees U, Hültner L, Staber FG, Kirchner H and Marcucci F
Analysis of lymphokine production by T cell clones. Relationship between specific and non-specific immunity
In "Hematology Today" (Baum, S.J, Ledney, G.D, eds.) Karger, Basel, pp. 27-29 (1982)

16. Marcucci F, Nowak M, Krammer PH and Kirchner H
Production of high titers of interferon-γ by cells derived from short-term cultures of murine spleen leukocytes in T cell growth factor conditioned medium

17. Northoff H, Stoeck M and Krammer PH
Effect of Phorbol-Myristate Acetate and Concanavalin A on the growth of Interleukin-2 dependent T cell lines

Aspects of alloreactivity: Lymphokine release from alloreactive T cell clones in long term culture

T cell derived B cell differentiation factors (BCDF): Definition of BCDFu and BCDF

Interleukin-2 does not induce murine B cells to secrete Ig

Production of Lymphokines by T cell hybridomas derived from a fusion of the AKR T cell tumor BW5147 and a selected high producer T cell clone in long term culture

22. Vitetta ES, Isakson PC, Purç E and Krammer PH
Identification and characterization of a lymphokine which induces murine B cells to secrete IgG

Macrophage activating factors from different T cell clones induce distinct macrophage functions

T cell derived B cell growth and differentiation factors: Dichotomy between the responsiveness of B cells from adults and neonatal mice

25. Brooks K, Yuan D, Uhr J, Krammer PH and Vitetta ES
Lymphokine-induced IgM secretion by clones of neoplastic B cells (BCL1)
Nature 302, 825-826 (1983)

26. Layton IE, Uhr JW. Purç E, Krammer PH and Vitetta ES
T cell derived B cell growth (BCGF) and differentiation (BCDF) factors: Suppression of BCDF but not BCGF activity by bone marrow cells

Segregation of production of macrophage activating factor (MAF), colony stimulating factor (CSF) and immune intcrferon (IFN-y) in T cell hybridomas derived from a fusion with a selected high producer T cell clone in long term culture secreting all three lymphokines

28. Krammer PH
Immuninterferon-Produktion in Lymphozytenkulturen

Ca 9 S. Lavi, E. Winocour, Weizmann Institute of Science, Rehovot
G. Sauer, DKFZ, Heidelberg

1. Lavi S and Etkin S
Carcinogen-mediated induction of SV40 DNA synthesis in SV40 transformed Chinese hamster embryo cells
Carcinogenesis 2, 417-423 (1981)

2. Lavi S
Carcinogen-mediated amplification of viral DNA sequences in SV40-transformed Chinese hamster embryo cells

3. Lavi S
Carcinogen-mediated amplification of specific DNA sequences
J.Supramolecular Structure & Cellular Biochem. 18, 149-156 (1982)
4. Lavi S
Carcinogen-mediated activation of SV40 replicons: a model system for initiation of carcinogenesis

Ca 11 T. Mekori, E. Robinson, Technion, Haifa
H. Kirchner, E Storch, DKFZ, Heidelberg

Combined adjuvant therapy of radically operated colo-rectal cancer patients (chemotherapy, radiotherapy and MER-BCG)
2. Storch E and Kirchner H
Induction of interferon in murine bone marrow-derived macrophage cultures by 10-carboxymethyl-9-acridanone

Ca 12 D. Sulitzeanu, Hebrew University of Jerusalem
M. Zöller, S. Matzku, DKFZ, Heidelberg

1. Gilead Z, Troy FA and Sulitzeanu D
Isolation and electrophoretic analysis of immune complexes from patients with breast cancer
2. Gilead Z, Gazitt Y, Klein G and Sulitzeanu D
Purification and analysis of immune complexes with the aid of tubes coaled with Rheumatoid Factor
3. Gilead Z, Gazitt Y and Sulitzeanu D
An improved technique for the isolation and analysis of immune complexes
4. Gazitt Y, Gilead Z, Klein G and Sulitzeanu D
A technique for the identification of glycoprotein antigens in immune complexes. Application of this technique to the detection of a common glycoprotein in sera of patients with Burkitt's lymphoma and Nasopharyngeal carcinoma
5. Sulitzeanu D
Markers in breast cancer
6. Gilead Z, Hatzubai A and Sulitzeanu D
Antigens in immune complexes from patients with breast cancer. Identification of autoantigens in immune complexes isolated from breast cancer offusions
7. Gazitt Y, Klein G and Sulitzeanu D
Reactivity with patient antibodies of partially purified gp40 antigen from immune complexes in Burkitt's lymphoma and nasopharyngeal carcinoma
Lack of correlation between carcinoembryonic antigen content of tumor extracts and leukocyte migration reactivity of tumor patients

Organ-related and malignancy-associated reactivity of cancer patients: leucocytes: a leucocyte migration study with tumor and fetal extracts

Sensitization of leukocytes of cancer patients against fetal antigens: leukocyte migration studies

Ca 13 A.J. Treves, S. Biran, Hadassah University Hospital, Jerusalem
W. Dröge, V. Schirrmacher, DKFZ, Heidelberg

1. Treves AJ, Barak V and Fuks Z
Characterization of human lymphocytes which proliferate "spontaneously" in vitro

2. Treves AJ, Barak V and Fuks Z
Antigen presentation and regulatory functions of human monocytes

3. Treves AJ, Haimovitz A and Fuks Z
Changes in surface markers of human monocytes following their in vitro maturation to macrophages

Changes in peanut agglutinin binding to human monocytes during their maturation to macrophages

The use of carcinoembryonic antigen for identification of human tumor cells in malignant effusions
Oncology 40, 18-25 (1983)

The effect of tuftsin on human monocyte cytotoxicity

Ca 14 E. Pick, Tel Aviv University
D. Gemsa, H. Kirchner, DKFZ, Heidelberg

1. Pick E and Keisari Y
A simple colorimetric method for the measurement of hydrogen peroxide produced by cells in culture

2. Pick E, Keisari Y and Bromberg Y
Mode of action of lymphokines: Are oxygen metabolites the intra- and extracellular mediators of lymphokine-induced macrophage activation?

3. Lapp WS, Mendes M, Kirchner H and Gemsa D
Prostaglandin synthesis by lymphoid tissue of mice experiencing a graft-versus-host reaction: Relationship to immunosuppression

4. Pick E and Keisari Y
Superoxide anion and hydrogen peroxide production by chemically elicited peritoneal macrophages - Induction by multiple non-phagocytic stimuli

5. Bromberg Y and Pick E
Activation of macrophage adenylate cyclase by stimulants of the oxidative burst and by arachidonic acid. Two distinct mechanisms

6. Keisari Y and Pick E
Macrophage mediated cytolysis of erythrocytes in the guinea pig. I. Activation by stimulators of the oxidative burst

7. Pick E, Keisari Y, Bromberg Y, Freund M and Jakubowski A
The oxidative burst in macrophages - Generation of superoxide and hydrogen peroxide; lipid peroxidation and effect on cyclic nucleotide levels

8. Keisari Y and Pick E
Nonspecific induction of macrophage mediated cytotoxicity by stimulators of oxygen metabolite generation in macrophages

9. Pick E and Mizel D
Role of transmethylation in the elicitation of an oxidative burst in macrophages

10. Pick E, Keisari Y, Bromberg Y and Freund M
Effect of tumor promoters in immunological systems - The macrophage as a target cell for the action of phorbol esters

11. Pick E, Bromberg Y and Freund M
Extrinsic regulation of macrophage function by lymphokines - Effect of lymphokines on stimulated oxidative metabolism of macrophages

12. Pick E and Bromberg Y
Quo vadis macrophage activation - Role of phospholipids in the elicitation of the oxidative burst in macrophages

13. Pick E and Bromberg Y
Regulation of macrophage function by Lymphokines - Role of membrane phospholipids

14. Bromberg Y and Pick E
Oxidative metabolism of lymphokine activated macrophages - Free fatty acids as second messengers of superoxide generation

15. Pick E and Freund M
Biochemical mechanisms of macrophage activation by lymphokines

Ca 15 D. Givol, P. Lonai, Weizmann Institute of Science, Rehovot
K. Eichmann, DKFZ, Heidelberg

1. Ben-Neriah Y, Givol D and Lonai P
Allotype-linked genetic control of a polymorphic VH framework determinant on mouse T-helper cell receptors

2.* Eichmann K, Ben-Neriah Y, Hetzelberger D, Polke C, Givol D and Lonai P
Correlated expression of VH framework and VH idiotypic determinants on T helper cells and on functionally undefined T cells binding group A streptococcal carbohydrate

3. Puri J, Ben-Neriah Y, Givol D and Lonai P
Antibodies to immunoglobulin heavy chain variable regions protect helper cells from specific suicide by radiolabeled antigen

4. Zakut R, Givol D and Mory YY
Structure of immunoglobulin Y2b heavy chain gene cloned from mouse embryo gene library
Nucleic Acids Res. 8, 453 (1980)

5. Zakut R, Cohen J and Givol D
Cloning and sequence of the cDNA corresponding to the variable region of immunoglobulin heavy chain MPC11
Nucleic Acids Res. 8, 3591 (1980)

T-cell hybridoma bearing heavy chain variable region determinants producing (T,G)-A-L specific helper factor
Nature 286, 270 (1980)

Allotype linked genetic control of a polymorphic VH framework determinant on mouse T-helper cell receptors

The diversity of germ-line VH genes

Polymorphism of germ-line immunoglobulin VH genes correlates with allotype and idiotype markers

10.* Lonai P, Puri J and Haemmerling GJ
H-2 restricted antigen binding by a hybridoma clone that produces antigen specific helper factor
11.* Lonai P, Puri J, Bitton S, Ben-Neriah Y, Givol D and Haemmerling GJ
H-2 restricted helper factor secreted by cloned hybridoma cells
12.* Lonai P, Haemmerling GJ, Givol D, Ben-Neriah Y and Puri J
Specific T-helper factor production and H-2 restricted antigen binding by helper cells: studies
with T-hybridoma clones
In "Monoclonal Antibodies and T Hybridomas", G.J. Haemmerling, H. Haemmerling and J.F.
13.* Lonai P, Arman E, Bitton-Grossfeld S, Grooten J and Haemmerling G
H-2 restricted helper hybridomas: One locus or two control dual specificity?
14.* Lonai P, Arman E, Savelkoul HFC, Friedman V, Puri J and Haemmerling G
Factors, receptors, and their ligands: studies with H-2 restricted helper hybridoma clones
In "Isolation, Characterization and Utilization of T Lymphocyte Clones. C.G. Fathman and
15.* Lonai P, Puri J and Haemmerling GJ
T hybridoma cells that produce genetically restricted helper factors and bind the carrier in
association with la
Lymphokine 5, 197-221 (1982)

Ca 16 R. Ben-Ishai, Technion, Haifa
H.W. Thielmann, DKFZ, Heidelberg

1. Miskin R and Ben-Ishai R
Induction of plasminogen activator by ultraviolet light in normal and xeroderma
pigmentosum fibroblasts
2. Hagedorn R, Thielmann HW, Fischer H and Schroeder CH
SV40-induced transformation and T-antigen production is enhanced in normal and repair-
deficient human fibroblasts after pretreatment of cells with UV light
3. Hsie AW, Recio L, Schenley RL and Thielmann HW
Quantitative analysis of mammalian cell mutagenesis
Mutagenesis and Genetic Toxicology 119, 137-152 (1983)
4. Hagedorn R, Thielmann HW and Fischer H
SOS-type functions in mammalian cells
5. Thielmann HW, Hagedorn R and Freber W
Evaluation of colony-forming ability experiments using normal and DNA repair-deficient
human fibroblast strains and an automatic colony counter
Cytometry 6, 130-136 (1985)

Ca 17 R. Simantov, Weizmann Institute of Science, Rehovot
F. Marks, DKFZ, Heidelberg

1. Simantov R and Sachs L
Role of phospholipase A2 and prostaglandin E in growth and differentiation of myeloid
leukemic cells
2. Simantov R and Sachs L
Enhancement of hormone action by a phorbol ester and anti-tubulin alkaloids involves different mechanisms

3.* Simantov R, Marks F, Fuerstenberger G and Sachs L
Control of endogenous cell regulators by the second stage tumor promoter phorbol-12-retinoate 13-acelate
Int.J.Cancer 31, 497-500 (1983)

Ca 18 S. Segal, E. Gorelik, Ben-Gurion University, Beer-Sheva G. Hämmerling, V. Schirrmacher, DKFZ, Heidelberg

1.* Wallich R, Bulbuc N, Hämmerling GJ, Katzav S, Segal S and Feldman M
Abrogation of metastatic properties of tumor cells by de novo expression of H-2K antigens following H-2 gene transfection
Nature 315, 301-305 (1985)

2.* Hämmerling GJ, Klar D, Katzav S, Segal S, Feldman M, Wallich R and Hemmerling A
Manipulation of metastasis and tumor growth by transfection with histocompatibility class I genes

3.* Eisenbach L, Katzav S, Hämmerling G, Segal S and Feldman M
Gene products of the major histocompatibility complex control the metastatic phenotype of tumor cells

4.* Alon Y, Hämmerling GJ, Segal S and Bar-Eli M
Association in the expression of Kirsten-ras oncogene and the MHC complex class I antigens in fibrosarcoma tumor cell variants exhibiting different metastatic capabilities
Cancer Res. 47, 2553-2557 (1987)

5.* Rager-Zisman B, Gopas J, Bar-Eli M, Har-Vardi I, Hämmerling GJ and Segal S
NK sensitivity, H-2, Ki-ras proto-oncogene expression and metastasis: Analysis of the metastatic potential of H-2 gene transfected fibrosarcoma cells

Influence of H-2K transfection on susceptibility of fibrosarcoma tumor cells to natural killer (NK) cells
Immunology Letters 17, 261-266 (1988)

The immunobiology of metastatic processes. Analysis of NK sensitivity and the metastatic potential of H-2 gene transfected fibrosarcoma cells
Natural Immunity and Cell Growth Regulation, 7, 155-162 (1988)

8.* Gopas J, Rager-Zisman B, Bar-Eli M, Hämmerling GJ and Segal S
The relationship between MHC antigen expression and metastasis

9.* Hämmerling GJ, Sturmhofel K, Strauss G, Momburg F, Gopas J and Segal S
The influence of murine and human major histocompatibility complex class I expression on tumor growth and metastasis
10.* Rager-Zisman B, Aboud M, Gopas J, Har-Vardi I, Hämmerling GJ and Segal S
Resistance to NK and metastatic potential of fibrosarcoma cells is associated with products encoded by the H-2D region
In "Seminars in Cancer Biology". (Eds) E. Klein, W.B. Saunders Company, 1991

Ca 19 E. Canaani, Weizmann Institute of Science, Rehovot
T. Graf, DKFZ, Heidelberg

1. Shtivelman E, Zakut R and Canaani E
Frequent generation of nonrescuable reorganized murine sarcoma viral genomes

2. Canaani E, Steiner-Saltz D, Aghai E, Gale RP, Berrebi A and Januszewicz E
An altered expression of an oncogene in chronic myeloid leukemia

3. Gale RP and Canaani E
An 8-kilobase abl RNA transcript in chronic myelogenous leukemia

4. Shtivelman E, Lifshitz B, Gale RP and Canaani E
Fused transcript of abl and bcr genes in chronic myelogenous leukaemia

Ca 20 M. Herzberg, Tel Aviv University
D. Werner, K. Munk, DKFZ, Heidelberg

1. Herzberg M, Nethanel T, Bibor-Hardy V and Wreschner DH
Location of RNase activity in nuclear residual structure

2. Wreschner DH and Herzberg M
A new blotting medium for the simple isolation and identification of highly resolved messenger RNA

3. Neuer B, Plagens U and Werner D
Phosphodiester bonds between polypeptides and chromosomal DNA

4. Müller M, Spiess E and Werner D
Fragmentation of nuclear matrix on a mica target

5* Werner D, Chemla Y and Herzberg M
Isolation of poly(A) RNA by paper affinity chromatography

6. Werner D, Shi Ch, Müller M, Spiess E and Plagens U
Antibodies to the most tightly bound proteins in eukaryotic DNA. Formation of immuno-complexes with 'nuclear matrix' components
Ca 21 J. Kapitulnik, R. Koren, Hebrew University of Jerusalem
F. Kolar, N. Fusenig, DKFZ, Heidelberg

1.* Tinenbaum T, Giloh H, Fusenig NE and Kapitulnik J
A rapid procedure for flow cytometric DNA analysis in cultures of normal and transformed
epidermal cells

2. Kolar GF and Habs M
3,7-Bis-(4-trifluoromethylphenyl)-1,5,3,7-dioxadiazocine: A novel cyclic product from a
reaction of 4-trifluoromethyl-benzenediazonium chloride and methyamine-formaldehyde
Tetrahedron Letters 26 (8), 1043-1044 (1985)

Ca 22 B. Geiger, Weizmann Institute of Science, Rehovot
W. Franke, DKFZ, Heidelberg

1.* Franke WW, Schmid E, Grund C and Geiger B
Intermediate filament proteins in non-filamentous structures: Transient disintegration and
inclusion of subunit proteins in granular aggregates
Cell 30, 103-113 (1982)

2.* Geiger B, Schmid E and Franke WW
Spatial distribution of proteins specific for desmosomes and adhaerens junctions in epithelial
cells demonstrated by double immunofluorescence microscopy
Differentiation 23, 189-205 (1983)

3.* Kartenbeck J, Schmid E, Franke WW and Geiger B
Different modes of internalization of proteins associated with adhaerens junctions and
desmosomes: Experimental separation of lateral contacts induces endocytosis of
desmosomal plaque material
EMBO 1.1, 725-732 (1982)

4.* Schiller DL, Franke WW and Geiger B
A subfamily of relatively large and basic cytokeratin polypeptides as defined by peptide
mapping is represented by one or several polypeptides in epithelial cells
EMBO J. 1, 761-769 (1982)

5.* Moll R, Franke WW, Schiller D, Geiger B and Krepler R
The catalogue of human cytokeratin popypeptides: Patterns of expression of specific
cytkeratins in normal epithelia, tumors and cultured cells

Detection of a cytokeratin determinant common to diverse epithelial cells by a broadly 3.
cross-reacting monoclonal antibody
EMBO J. 1, 1429-1437 (1982)

7.* Kreis TE, Geiger B, Schmid E, Jorcano JL and Franke WW
De novo synthesis and specific assembly of keratin filaments in non-epithelial cells after
microinjection of mRNA for epidermal keratin
Cell 32, 1125-1137 (1983)

8.* Franke WW, Schmid E, Wellsteed J, Grund C, Gigi O and Geiger B
Change of cytokeratin filament organization during the cell cycle: Selective masking of an
immunologic determinant in interphase PtK2 cells

9.* Geiger B, Schmid E and Franke WW
Desmosomes and adherens junctions: Spatial distribution of junctional and cytoskeletal proteins in epithelial cells demonstrated by double immunofluorescence microscopy
Differentiation 23, 189-205 (1983)

Dynamic rearrangements of cytokeratins in living cells

Use of antibodies to intermediate filaments in the diagnosis of metastatic amelanotic malignant melanoma
Human Pathol. 14, 1006-1008 (1983)

Distinctive immunofluorescent labeling of epithelial and mesenchymal elements of carcinosarcoma with antibodies specific for different intermediate filaments
Human Pathol. 15, 532-538 (1984)

Coexpression of neuroendocrine marker substances and epithelial cytoskeletal proteins in neuroendocrine neoplasms of the bronchopulmonary tract
Lab.Invest. 52, 39 (1985)

14. Geiger B, Avnur Z, Volberg T and Volk T
Molecular domains of adherens junctions

15. Shusler S, Huszar M and Geiger B
Immunofluorescent localization of intermediate filament subunits for the differential diagnosis of malignant melanoma
Am.J.Dermatopathol. 7, 79-86 (1985)

Embryonal rhabdomyosarcoma: Immunohistochemical study
Oral Surgery, Oral Medicine, Oral Pathology 60, 517-523 (1985)

17.* Huszar M, Gigi-Leitner O, Moll R, Franke WW and Geiger B
Polypeptidc specific monoclonal antibodies in the differential diagnosis of squamous carcinomas and adenocarcinomas
Differentiation 31 141-153 (1986)

18. Gigi-Leitner O and Geiger B
Antigenic interrelationships between 40 Kd cytokeratin popypeptide and desmoplakin
Cell Motility and the Cytoskeleton 6, 628-639 (1986)

Cytokeratin expression in squamous metaplasia of the human uterine cervix
Differentiation 31, 191-205 (1986)

20.* Volberg T, Geiger B, Kartenbeck J and Franke WW
Changes of membrane microfilament interaction in intercellular adherens junctions upon removal of extracellular Ca^{2+} ions

Ca 23 U.Z. Littauer, I. Ginzburg, Weizmann Institute of Science, Rehovot
H. Ponstingl, DKFZ, Heidelberg

1. Ginzburg I and Littauer UZ
Expression and cellular regulation of microtubule proteins

2. Ginzburg I and Littauer UZ
The expression of microtubule proteins during the development of the nervous system

3. Ginzburg I, Teichman A, Dodemont L, Behar L and Littauer UZ
Regulation of three beta-lubulin mRNAs during rat brain development
EMBO J. 4, 3667-3673 (1985)

4. Ginzburg I, Teichman A, Dodemont L, Behar L and Littauer UZ
Regulation of three beta-lubulin mRNAs during rat brain development
EMBO J. 4, 3667-3673 (1985)

5. Ginzburg I, Teichman A, Dodemont L, Behar L and Littauer UZ
Regulation of three beta-lubulin mRNAs during rat brain development
EMBO J. 4, 3667-3673 (1985)

6.* Littauer UZ, Giveon D, Thierauf M, Ginzburg I and Ponstingl H
Tubulin binding sites for microtubule associated proteins

7. Ginzburg I, Teichman A and Littauer UZ
Isolation and characterization of two rat alpha-tubulin isotypes

8. Ginzburg I, Teichman A and Littauer UZ
The expression of microtubule proteins during the development of the nervous system

9.* Littauer UZ, Giveon D, Thierauf M, Ginzburg I and Ponstingl H
Common and distinct tubulin binding sites for microtubule-associated proteins

10. Ginzburg I, Teichman A and Littauer UZ
Common and distinct tubulin binding sites for microtubule-associated proteins

11. Ginzburg I, Teichman A and Littauer UZ
Common and distinct tubulin binding sites for microtubule-associated proteins

12. Ginzburg I, Teichman A and Littauer UZ
Common and distinct tubulin binding sites for microtubule-associated proteins

13. Ginzburg I, Teichman A and Littauer UZ
Common and distinct tubulin binding sites for microtubule-associated proteins

14. Ginzburg I, Teichman A and Littauer UZ
Common and distinct tubulin binding sites for microtubule-associated proteins

Ca 24 I. Vlodavsky, Hadassah University Hospital, Jerusalem
V. Schirrmacher, DKFZ, Heidelberg

1.* Vlodavsky I, Fuks Z, Bar-Ner M, Ariav Y and Schirrmacher V
Lymphoma cell mediated degradation of sulfated proteoglycans in the subendothelial extracellular matrix: Relationship to tumor cell metastasis
Cancer Res. 43, 2704-2711 (1983)

2.* Vlodavsky I, Fuks Z and Schirrmacher V
In vitro studies on tumor cell interaction with the vascular endothelium and subsequent degradation of the subendothelial extracellular matrix: Relationship to tumor cell metastasis

3.* Schirrmacher V and Vlodavsky I
In vitro interactions of aortic cnndothelial cell monolayers with tumor cell lines of different invasive and metastatic capacity

4.* Schirrmacher V and Vlodavsky I
Interaction of metastatic and nonmetastatic tumor lines with aortic endothelial cell monolayer and their underlying basal lamina
In Proc. 1st Eur. Conf. on Serum Free Cell Culture. Springer Verlag, pp. 159-163 (1983)
5.* Vlodavsky I, Schirrmacher V, Ariav Y and Fuks Z
Lymphoma cell interaction with cultured vascular endothelial cells and with the
subendothelial basal lamina: Attachment, invasion and morphological appearance
Invasion and Metastasis 3, 81 -97 (1983)

6.* Schirrmacher V, Waller C and Vlodavsky I
In vitro invasion of lymphomas with different metastatic capacity
In "B and T cell tumors: Biological and clinical aspects", UCLA Symposia on Molecular and
311 (1983)

7.* Schirrmacher V and Vlodavsky I
Interaction of metastatic and non-metastatic tumor lines with aortic endothelial cell
monolayer and their underlying basal lamina
In "Hormonally Defined Media. A Tool in Cell Biology", Fischer, Wieser (eds.), Springer
Verlag, Heidelberg, pp. 151-161 (1983)

8.* Kramer MD, Robinson P, Vlodavsky I, Barz D, Friberger P, Fuks Z and
Schirrmacher V
Characterization of an extracellular matrix-degrading protease derived from a highly
metastatic tumor cell line

9.* Vlodavsky I, Fuks Z, Bar-Ner M, Yahalom J, Eldor A, Savion N, Naparstek Y,
Cohen IR, Kramer M and Schirrmacher V
Degradation of heparan sulfate in the subendothelial basement membrane by normal and
malignant blood-borne cells
York, pp. 283-308 (1985)

Vlodavsky, I
Sequential degradation of heparan sulfate in the subendothelial extracellular matrix by
highly metastatic lymphoma cells
Int. J. Cancer 35, 483-491 (1985)

A T lymphoma derived proteinase, synergizing with an endoglycosidase in the degradation of
sulphated proteoglycans in subendothelial extracellular matrix
In „Proteinases in Inflammation and Tumor Invasion” (Tschesche, H, ed.) Walter de Gruyter

Platelet tumor cell interaction with the subendothelial extracellular matrix: Relationship to
cancer metastasis
Radiotherapy and Oncology, 3, 211-225 (1985)

Degradation of heparan sulfate in the subendothelial basement membrane by a readily
released heparanase from human neutrophils

MM
Characterization and isolation of a trypsin-like serine protease from a long term culture
cytolytic T cell line and its expression by functionally distinct T cells

15.* Bar-Ner M, Mayer M, Schirrmacher V and Vlodavsky I
Involvement of both heparanase and plasminogen activator in lymphoma cell mediated
degradation of heparan sulfate in the subendothelial extracellular matrix
16. Schirrmacher V, Brunner G, Waller CA and Vlodavsky I
Mechanism of transendothelial cell passage and matrix degradation by metastatic tumor cells
Progress in Applied Microcirculation 12, 185-194 (1987)

Inhibition of heparanase mediated degradation of heparan sulfate by non anticoagulant heparin species
Blood 70, 551-557 (1987)

Involvement of heparanase in tumor metastasis and angiogenesis

Suppression of experimental autoimmune diseases and prolongation of allograft survival by treatment of animals with heparanoid inhibitors of T lymphocyte heparanase

Heparanase activity expressed by platelets, neutrophils and lymphoma cells releases active fibroblast growth factor from extracellular matrix
Cell, Reg. 1:833-842 (1990)

Production of heparanase by normal and transformed murine B-lymphocytes

Expression of heparanase by platelets and circulating cells of the immune system: Possible involvement in diapedesis and extravasation
Invasion & Metastasis, 12, 112-127 (1992)

Inhibition of tumor metastasis by heparanase inhibiting species of heparin
Invasion & Metastasis, 14: 290-302 (1995)

Molecular behavior adapts to context: Heparanase functions as an extracellular matrix degrading enzyme or as a T cell adhesion molecule depending on the local pH

Structural requirements for inhibition of melanoma cell metastasis by heparanase inhibiting species of heparin

Ca 25 S. Shaltiel, Weizmann Institute of Science, Rehovot
V. Kinzel, M. Gagelmann DKFZ, Heidelberg

1. Zick Y, Cesla R and Shaltiel S
Viable mouse thymocytes as a model system for studying the onset of hormone-induced cellular refractoriness

2. Zick Y, Cesla R and Shaltiel S
Exposure of thymocytes to a low temperature (4°C) inhibits the onset of their hormone-induced cellular refractoriness
J.Biol.Chem. 257, 4253-4259 (1983)

3. **Shaltiel S**
Hydrophobic chromatography

4. **Shaltiel S**
Hydrophobic chromatography and its relevance to biological recognition

5. **Halperin G, Tauber-Finkelstein M and Shaltiel S**
Hydrophobic chromatography of cells: Adsorption and resolution on homologous series of alkylagaroses

6. **Alhanaty E, Tauber-Finkelstein M, Schmeeda H and Shaltiel S**
The cAMP-triggered proteolysis of cAMP-dependent protein kinase in brushborder membranes
Current Topics in Cellular Regulation, 27, 267-278 (1985)

Chromatographic separation of two heterogeneous forms of the catalytic subunit of cyclic AMP-dependent protein kinase holoenzyme type I and type II from striated muscle of different mammalian species

8. **De Jonge H, Schmeeda H and Shaltiel S**
Orientation of the brush-border membranal proteinase which specifically splits the catalytic subunit of cAMP-dependent protein kinase

9. **Reed J, Gagelmann M and Kinzel V**
Isolation and elucidation of some functional properties of the "mute" catalytic subunit of cAMP-dependent protein kinase

10. **Reed J and Kinzel V**
Ligand binding site interaction in cAMP-dependent protein kinase catalytic subunit: Circular dichroic evidence for intramolecular transmission of conformational change

11. **Reed J and Kinzel V**
The near- and far-ultraviolet circular dichroism of the catalytic subunit of cAMP-dependent protein kinase

12. **Reed J, Kinzel V, Kemp BE, Cheng HC and Walsh DA**
Circular dichroic evidence for an order of sequence of ligand binding site interactions in the catalytic reaction of the cAMP-dependent protein kinase
Biochemistry 24, 2967-2973 (1985)

13. **Van Patten SM, Hotz A, Kinzel V and Walsh DA**
The inhibitor protein of the cyclic AMP-protein kinase-catalytic subunit interaction
Ca 26 A. Panel, Hebrew University of Jerusalem
H. Kirchner, H. Jacobsen, DKFZ, Heidelberg

1. Panel A, Gloger I and Falk H
Mechanisms of herpes simplex virus inhibition by interferon

2.* Domke I, Straub P, Jacobsen H, Kirchner H and Panet A
Inhibition of replication of herpes simplex virus in mouse macrophages by interferons

3.* Straub P, Domke I, Kirchner H, Jacobsen H and Panet A
Synthesis of herpes simplex virus proteins and nucleic acids in interferon-treated macrophages
Virology 150. 411-418 (1986)

The antiproliferative effect of interferon and the mitogenic activity of growth factors are independent cell cycle events

5. Mittnacht S, Straub P, Kirchner H and Jacobsen H
Interferon treatment inhibits onset of herpes simplex virus immediate early transcription
Virology, 164, 201-210 (1988)

6. Oberman F and Panet A
Inhibition of transcription of herpes simplex virus immediate early genes in interferon-treated cells

Isolation and characterization of interferon resistant variants of S49 mouse lymphoma
Experimental cell research, 177, 37-46 (1988)

8. Einhorn S, Eldor A, Vlodavski I, Fuks Z and Panet A
Production and characterization of interferon from endothelial cells
J.Cell.Physiol. 122, 200-204 (1985)

9. Gloger I, Arad G and Panet A
Regulation of Moloney murine leukemia virus replication in chronically infected cells arrested at the G0/G1 phase
J.Virology 54, 844-850 (1985)

Ca 27 M. Bar-Eli, Ben-Gurion University, Beer-Sheva
G. Hämmerling, DKFZ, Heidelberg

1.* Alon Y, Hämmerling GJ, Segal S and Bar-Eli M
Association in the expression of Kirsten-ras oncogene and the MHC complex class I antigens in fibrosarcoma tumor cell variants exhibiting different metastatic capabilities
Cancer Res. 47, 2553-2557 (1987)

2.* Rager-Zisman B, Gopas J, Bar-Eli M, Har-Vardi I, Hämmerling GJ and Segal S
NK sensitivity, H-2, Ki-ras proto-oncogene expression and metastasis: Analysis of the metastatic potential of H-2 gene transfected fibrosarcoma cells
In "Proc. of the Int. Congress on Cancer Metastasis: Biological and Biochemical Mechanisms and Clinical Aspects", Bologna, Italy (1987)

Influence of H-2K transfection on susceptibility of fibrosarcoma tumor cells to natural killer (NK) cells
Immunology Letters 17, 261-266 (1988)

The immunobiology of metastatic processes. Analysis of NK sensitivity and the metastatic potential of H-2 gene transfected fibrosarcoma cells
Natural Immunity and Cell Growth Regulation, 7, 155-162 (1988)

5. *Gopas J, Rager-Zisman B, Bar-Eli M, Hämmerling GJ and Segal S*
The relationship between MHC antigen expression and metastasis

Ca 28 R. Kaempfer, Hebrew University of Jerusalem
P. Krammer, DKFZ, Heidelberg

1. **Kaempfer R and Efrat S**
Regulation of human interleukin-2 gene expression

2. **Kaempfer R and Efrat S**
Regulation of human interleukin-2 gene expression
In "Leukocytes and Host Defense" (J.J. Oppenheim and D.M. Jacobs, eds.), Alan R. Liss, Inc, N.Y, pp. 57-68 (1986)

3. **Kaempfer R, Efrat S and Marsh S**
Regulation of human interleukin-2 gene expression

Superinduction of the human gene encoding immune interferon
EMBO J. 6, 585-589 (1987)

Suppression of human interleukin-2 and interferon-γ gene expression by monocytes and macrophages

The potential to express or suppress human interleukin-2 and interferon-γ genes is not restricted to distinct cell subsets
Molecular Immunology 27, 1325-1330 (1990)

Regulation of human interleukin-2 and interferon-γ gene expression by suppressor T lymphocytes

8. **Hamann U and Krammer PH**
Activation of macrophage tumor cytotoxicity inducing factor 2 (MCIF2)

9. **Kubelka CF, Krammer PM, Ruppel A and Gemsa D**
Macrophage cytotoxicity against schistosomula of Schistosoma Mansoni following stimulation with macrophage-activating factors produced by T cell clones
In "Tropenmedizin, Parasitologie" (J. Boch, ed.) Verlag P. Lang, Frankfurt, pp. 184-186 (1984)

Stimulation of macrophage activity by 12-0-Tetradecanoyl-Phorbol-1 3-Acetate

11. Krammer PH et al.
Regulation of hematopoietic differentiation and its disruption

Activation of macrophages by lymphokines from T cell clones: evidence for different macrophage activating factors
Molecular Immunology, 21, 1267-1276 (1984)

The activity of lymphokines secreted by normal and malignant T cells

Heterogeneity of macrophage activating factors and their effects in vivo

Activation of the YL gene by lipopolysaccharide (LPS) and T cell derived lymphokines containing a B cell differentiation factor for IgGl (BCDFy)

16. Layton JE, Vitetta ES, Uhr JW and Krammer PH
Clonal analysis of B cells induced to secrete IgG by T cell derived lymphokine(s)

The role of T cell clone- and hybridoma-derived lymphokines in macrophage activation

18. Noelle R, Krammer PH, Uhr J and Vitetta ES
Increased expression of la antigens on resting B cells: A new role for B cell growth factor

T cell clones secrete lymphokines that activate different macrophage functions

Induction of IL-2 receptor expression and cytotoxicity of thymocytes by stimulation with T cell cytotoxicity inducing factor 1

Activation of tumoricidal and schistosomulicidal macrophages by sequential lymphokine signals

22. **Kubelka C, Ruppel A, Gemsa D and Krammer PH**
In vivo activation of macrophages by T cell derived lymphokines: Killing of tumor cells and schistosomula of *S. mansoni*
Immunobiol. 171. 311-319 (1986)

23. **Krammer PH, Kubelka CF, Falk W and Ruppel A**
Priming and triggering of tumoricidal and schistosomulicidal macrophages by two sequential lymphokine signals: Interferon-gamma and MCIF2

24. **Kubelka CF, Ruppel A, Krammer PH and Gemsa D**
Killing of schistosomula of *Schistosoma mansoni* by macrophages: Induction by T cell clone-derived lymphokines and interferon-gamma
Parasitology 92, 325-336 (1986)

25. **Gemsa D, Nain M, Hansch GM, Lovett D, Krammer PH and Resch K**
Release of prostaglandins and modulation of leukocyte functions

Ca 29 A. Raz, A. Ben-Ze'ev, Weizmann Institute of Science, Rehovot
M. Zölter, DKFZ, Heidelberg

1. **Ben-Ze'ev A and Raz A**
The relationship between the organization and synthesis of vimentin and the metastatic capability of B16 melanoma cells
Cancer Res. 45, 2632-2641 (1985)

2.* **Raz A, Zölter M and Ben-Ze'ev A**
Cell configuration and adhesive properties of metastasizing and non-metastasizing BSp73 rat adenocarcinoma cells

3.* **Ben-Ze'ev A, Zölter M and Raz A**
Differential expression of intermediate filament proteins in metastatic and nonmetastatic variants of the BSp73 tumor
Cancer Res. 46, 785-790 (1986)

4. **Raz A and Ben-Ze'ev A**
Cell-contact and architecture of malignant cells and their relationship to metastasis
Cancer and Metastasis Reviews 6, 3-21 (1987)

5. **Nabi IR and Raz A**
Cell shape modulation alters glycosylation of metastatic melanoma cell-surface antigen

6. **Nabi IR and Raz A**
Loss of metastatic responsiveness to cell shape modulation in a newly characterized B16 melanoma adhesive cell variant
Cancer Res. 48, 1258-1264 (1988)

7. **Zölter M**
Acquired resistance towards immune defense during metastatic progression represents a secondary phenomenon
Int.J.Cancer 37, 115 (1986)

8.* **Zölter M, Strubel A, Haemmerling GJ, Andrighetto G, Raz A and Ben-Ze'ev A**
Interferon-gamma treatment of B16 melanoma cells: Opposing effects for non-adaptive and adaptive immune defense and its reflection by metastatic spread
Int.J.Cancer 41, 256-266 (1988)

9. Zöller M and Matzku S
Changes in adhesive properties of tumor cells do not necessarily influence metastasizing capacity

10. Matzku S, Wenzel A and Zöller M
Antigenic differences between metastatic and nonmetastatic BSp73 rat tumor variants characterized by monoclonal antibodies
Cancer Res, 49, 1294-1299 (1989)

11. Zöller M
IFN-treatment of B16-F1 versus B16-FIO; relative impact on non-adaptive and T-cell-mediated immune defense in metastatic spread

12. Zöller M
Acquired resistance towards immune defense during metastatic progression represents a secondary phenomenon
Int.J.Cancer, 37, 115-122 (1986)

13. Zöller M

14. Zöller M
Cytotoxic T-cell precursors against non-immunogenic rat tumors: limiting dilution analysis
Int.J.Cancer, 37, 133-140 (1986)

15.* Rodriguez-Fernandez JL, Geiger B, Salomon D, Sabanay I, Zöller M and Ben Ze'ev A

Regulation of adherens junction protein levels: its role in cell motility and tumorigenicity

17.* Pankov R, Simcha L, Zöller M, Oshima RG and Ben-Ze'ev A
Contrasting effects of K8 and K18 on stabilizing K19 expression, cell motility and tumorigenicity in the BSP73 adenocarcinoma

Ca 30 V. Rotter, Weizmann Institute of Science, Rehovot V. Schirrmacher, DKFZ, Heidelberg

1.* Pohl J, Goldfinger N, Radler-Pohl A, Rotter V and Schirrmacher V
p53 increases experimental metastatic capacity of murine carcinoma cells
Ca 31 S. Mitrani-Rosenbaum, Hebrew University of Jerusalem
L. Gissmann, DKFZ, Heidelberg

Papillomaviruses in lesions of the lower genital tract in Israeli patients
2. Gal D, Friedman M and Mittrani-Rosenbaum S
Transmissibility and treatment failures of different types of human papillomavirus
Obstetrics and Gynecology 73, 308-314 (1989)
Estrogen stimulates differential transcription of human papillomavirus type 16 in Siha
cervical carcinoma cells
Human papillomavirus type 48
5. Gallahan D, Müller M, Schneider A, Delius H, Kahn T, de Villiers E-M and
Gissmann L
Human papillomavirus type 53

Ca 32 S. Lavi, Tel Aviv University
J. Schlehofer, DKFZ, Heidelberg

1. Lavi S, Kleinberger T, Berko-Flint Y and Blank M
Stable and transient amplification of DHFR and SV40 in carcinogen treated cells
(1986)
2. Aladjem M, Koltin Y and Lavi S
Carcinogen mediated amplification of the CUP7 locus of Saccharomyces cerevisiae
Carcinogen induced trans-activation of gene expression
4. Kleinberger T, Sahar E and Lavi S
Carcinogen mediated co-activation of two independent genes in Chinese hamster cells
Carcinogenesis 9, 979-985 (1989)
5. Berko-Flint Y, Karby S and Lavi S
Carcinogen induced factors responsible for SV40 DNA replication and amplification in
Chinese hamster cells
6, pp.183-189 (1988)
Carcinogen induced DNA amplification in-vitro: over-replication of the SV40 origin region in
extracts from carcinogen treated CO60 cells
Ca 33 Y. Milner, Hebrew University of Jerusalem
M. Hergenhahn, DKFZ, Heidelberg

The involvement of two Protein Kinase C (PKC) subspecies in two distinct processes in keratinocytes: their role in cell adhesion and cell spreading
Journal of Investigative Dermatology 90, 555 (1988)

2. **Simon A, Dvir A, Steingart R, Michel B and Milner Y**
Protein Kinase C translocation in human and guinea-pig keratinocytes - the role of membrane physical organization

Ca 34 J. Schlessinger, Weizmann Institute of Science, Rehovot
V. Kinzel, F. Marks, DKFZ, Heidelberg

1. **Livneh E, Dull TJ, Berent E, Prywes R, Ullrich A and Schlessinger J**
Release of phorbol ester induced mitogenic block by mutation at Thr 654 and J4 EGF-receptor

2. **Benveniste M, Livneh E, Schlessinger J and Kam Z**
Overexpression of epidermal growth factor receptor in NIH-3T3-transfected cells slows its lateral diffusion and rate of endocytosis

Early changes in the arachidonic acid metabolism of HeLa cells in response to tumor promoter 12-0-tetradecanoylphorbol-13-acetate (TPA) and related compounds

The role of arachidonic acid release in the G2 delay induced by tumor promoter TPA in HeLa cells

5. **Kaszkin M, Espe U, Fuerstenberger G and Kinzel V**
Dual effect of the phorbol ester TPA on arachidonic acid release from HeLa cells
FEBS Letters 233, 244-248 (1988)

6. **Kinzel V, Bonheim G and Richards J**
Phorbol ester-induced G2 delay in HeLa cells analyzed by time lapse photography
Cancer Res. 48, 1759-1762 (1988)

The wound response as a key element for an understanding of multistage carcinogenesis in skin

8. **Marks F and Fuerstenberger G**
Conversion induced by transforming growth factors alpha and beta: The role of "wound hormones" in multi-stage skin carcinogenesis

A stimulatory role of transforming growth factors in multistage skin carcinogenesis: possible explanation for the tumor-inducing of wounding in initiated NMRI mouse skin

10. Kinzel V, Kaszkin M, Blume A and Richards J
Epidermal growth factor inhibits transiently the progression from G2-phase to mitosis: A receptor-mediated phenomenon in various cells
Cancer Res. 50, 7932-7936 (1990)

Ca 35 H. Manor, Technion, Haifa
M. Pawlita, DKFZ, Heidelberg

1. Baran N, Lapidot A and Manor H
Unusual sequence element found at the end of an amplicon
Molecular and Cellular Biology 7, 2636-2640 (1987)

2. Manor H, Sridhara Rao B and Martin RG
Abundance and degree of dispersion of genomic d(GA)n.d(TC)n sequences

3. Baru M and Manor H
Induction of polyomavirus DNA replication by cyclic AMP and a tumor promoter
Intervirology 29, 328-333 (1988)

4. Lapidot A, Baran N and Manor H
(dT-dC)n and (dG-dA)n tracts arrest single stranded DNA replication in vitro

5. Pawlita M, Bozenhardt I, Heilbronn R and zur Hausen H
Amplification of lymphotropic papovirus DNA sequences in hamster and human cell lines

6. Forbes B, Gissman L and Pawlita M
Detection of individual virus infected cells by filter in situ hybridization
Molecular and Cellular Probes 2, 245-253 (1988)

7. Mühlbach P and Pawlita M
A stable flank of unstable lymphotropic papovavirus integration sites is associated with a cellular S1-nuclease sensitive sequence

Ca 36 B. Czernobilsky, Kaplan Hospital, Rehovot
W. Franke, DKFZ, Heidelberg

1.* Czernobilsky B, Moll R, Leppien G, Schweihart G and Franke WW
Desmosomal plaque-associated vimentin filaments in human ovarian granulosa cell tumors of various histologic patterns
Am.J.Pathol. 126, 476-486 (1987)

2.* Dockhorn-Dworniczak B, Franke WW, Schröder S, Czernobilsky B, Gould VE and Böcker W
Patterns of expression of cytoskeletal proteins in human thyroid gland and thyroid carcinomas
Differentiation 35, 53-71 (1987)
Immunocytochemical study of an endometrial diffuse clear cell stromal sarcoma and other endometrial stromal sarcomas
Cancer 59, 1494-1499 (1987)

Cytokeratin patterns in the epidermis of human ovarian mature cystic teratomas
Human Pathology 20, 185-192 (1989)

Alpha smooth muscle actin in normal human ovaries, in ovarian stromal hyperplasia and in ovarian neoplasms
Virchows Arch. B (Cell Pathol.) 57, 55-61 (1989)

Heterogeneity of intermediate filament expression in human testicular seminomas
Differentiation 45, 242-249 (1990)

7. Longo FJ, Krohne G and Franke WW
Basic proteins of the perinuclear theca of mammalian spermatozoa and spermatids: A novel class of cytoskeletal elements

Complexity of expression of intermediate filament proteins, including glial filament protein, in endometrial and ovarian adenocarcinomas

9. Czernobilsky B
Differentiation patterns in human testicular germ cell tumors
Editorial & Virchows Archiv A 419, 77-78 (1991)

Intermediate filament protein profiles of human testicular non-seminomatous germ cell tumor: Correlation of cytokeratin synthesis to cell differentiation
Differentiation 48, 191-198 (1991)

Small cell carcinoma of the ovary. An immunohistochemical study with review of the literature
Virchows Arch. A 421, 263-270 (1992)

12. Czernobilsky B
Intermediate filament profile of sex cord-stromal tumors and germ cell tumor of the ovary

13. Czernobilsky B
Intermediate filaments in ovarian tumors
Int.J.Gynecol.Pathol. 12, 166-169 (1993)

14. Azumi N and Czernobilsky B
Immunohistochemistry

15. Lifschitz-Mercer B, Walt H, Kushnir I, Jacob N, Diner PA, Moll R and Czernobilsky B
Differentiation potential of ovarian dysgerminoma. An immunohistochemical study of 15 cases

Ca 37 I. Friedberg, Tel Aviv University
D. Kübler, W. Pyerin, DKFZ, Heidelberg

1. Weisman GA, Lustig KD, Lane E, Huang N, Belzer Land Friedberg I
Growth inhibition of transformed mouse fibroblasts by adenine nucleotides occurs via
generation of extracellular adenosine

2. Belzer I and Friedberg I
ATP-resistant variants of transformed mouse fibroblasts

3. Gonzalez FA, Bonapace E, Belzer L, Friedberg I and Heppel LA
Two distinct receptors for ATP can be distinguished in Swiss 3T6 mouse fibroblasts by their
desensitization

Human phosphatase/casein kinase type II. Molecular cloning and sequencing of full length cDNA
encoding subunit beta

5.* Friedberg I and Kuebler D
The role of surface protein kinase in ATP-induced growth inhibition in transformed mouse
fibroblasts
Acad. Sci. 603, 513-515 (1990)

Evidence for ecto-protein kinase activity that phosphorylates Kemptide in a cyclic AMP-
dependent mode
J.Biol.Chem. 264, 14549-14555 (1989)

7. Kuebler D and Pyerin W
Cell surface protein kinase mediated protein phosphorylation
Acad. Sci. 603, 516-518 (1990)

Structure of the gene encoding human casein kinase II subunit β
J.Biol.Chem. 266, 13706-13711 (1991)

9. De BK and Friedberg L
Effect of ionophore A23187 on the membrane permeability in mouse fibroblasts

10.* Friedberg I, Belzer I, Oged-Plesz O and Kübler D
Activation of cell growth inhibitor by ecto-protein kinase-mediated phosphorylation in
transformed mouse fibroblasts

Induced release of cell surface protein kinase yields CK1 and CK2-like enzymes in tandem
Ca 38 Y. Kaufmann, Chaim Sheba Medical Center, Tel Hashomer
W. Falk, P.Krammer, DKFZ, Heidelberg

1. Esparza I, Männel DN, Ruppel A, Falk W and Krammer PH
Interferon-γ and lymphotoxin or tumor necrosis factor act synergistically to induce
macrophage killing of tumor cells and schistosomula of Schistosoma mansoni

2. Falk W, Krammer PH and Männel DN
A new assay for Interleukin-1 in the presence of Interleukin-2

Preactivation of macrophages in mice acutely infected with Schistosoma mansoni
Immunobiology 177, 105-119 (1988)

4. Echtenacher B, Hederer R and Krammer PH
Biological effects of a rat monoclonal anti-mouse IFN-γ antibody produced by in vitro
immunization
Immunobiology 176, 96-107 (1987)

5. Ozery T, Berke G, Moskovich M, Ozato K and Kaufmann Y
T cell activation; independent induction of killing activity and IL-2 secretion in cytolytic
hybridomas

Lymphokine-activated killer (LAK) cells; Interferon-gamma synergizes with IL-2 to induce
LAK cytotoxicity in homogeneous leukemic preparations

7. Falk W, Männel DN, Darjes H and Krammer PH
Interleukin-1 induces high affinity interleukin-2 receptor expression of CD4-8-thymocytes

Internalization of interleukin-1 (IL-1) correlates with IL-1-induced IL-2 receptor expression
and IL-2 secretion by EL4 thymoma cells

Activation of T cells by interleukin-1 involves internalization of interleukin-1
Lymphokine Res. 8, 263-268 (1989)

10. Falk W, Albrecht MP, Stricker K, Serfling E and Krammer PH
Internalization of IL-1 is required for IL-2 gene activation in EL4 thymoma cells

Autocrine growth factors secreted by the malignant human B cell line BJAB are distinct from
other known cytokines
Eur.Cytokine Net 1, 41-46 (1990)

Falk W, Petzold D and Krammer PH
Die Grundlagen der Aktivierung von T-Helferzellen und ihre Beziehung zum Krankheitsbild
Aids
In "Aids, Forschungsergebnisse im Rahmen des Statusseminars des BMFT", Hrsg.:
Lack of Interleukin-2 (IL-2) dependent growth of Tac positive T-ALL/NHL cells is due to the expression of only low affinity receptors for IL-2.
Leukemia, 8, 566-571 (1989)

14. Krammer PH, Kirchner H and Schimpl A
Lymphokines
In "Immunology in the Federal Republic of Germany"; Immunology Today, suppl. 10, S21-S22 (1989)

Ca 39 M. Revel, J. Chebath, Weizmann Institute of Science, Rehovot
R. Zawatzky, H. Kirchner, DKFZ, Heidelberg

1. Chen L, Novick D, Rubinstein M and Revel M
Recombinant interferon-beta-2 (interleukin-6) induces myeloid differentiation

The myeloid blood cell differentiation inducing protein MGI-2A is interleukin-6
Blood 72, 2070-2073 (1988)

3. Cohen B, Vaiman D and Chebath J
Enhancer functions and in vivo protein binding of native and mutated interferon responsive sequences

4. Revel M, Chen L, Mory Y, Zilberstein A and Michalevicz R
Interferon-type and other activities of IFN-beta-2/BSF/HSF

Biological activities of recombinant human IFN-beta-2/IL-6 (E.coli)

6. Revel M
Host defense against infections and inflammations: Role of the multifunctional IL-6/IFN-beta-2 cytokine
Experientia 45, 549-557 (1989)

8. Gothelf Y, Raber J, Chen L, Michalevicz R, Chebath J and Revel M
Differentiation of myeloleukemia cells by IL-6/IFN-beta-2
J.Interferon Res. 9, supt 2, S144 (1989)

9. Chen L, Gothelf Y, Raber J, Michalevicz R, Chebath J and Revel M
Effects of recombinant human IL-6/IFN-beta-2 on tumor cells
Cytokine 1, 153 (1989)

Activation of protein binding to interferon-responsive sequence (IRS) following type I interferon involves a phosphorylation
J.Interferon Res. 9, supt 2, S160 (1989)
11. **Hoss A, Zwarthoff EC and Zawatzky R**
Differential expression of interferon alpha and beta induced with Newcastle disease virus in mouse macrophage cultures

The growth-promotive, differentiative, and cytostatic properties of interleukin-6

Control of cell growth and differentiation by IL-6

14. **Chebath J, Cohen B, Gothelf Y, Cohen B, Raber J and Revel M**
Protein binding to the interferon-responsive enhancer of the (2'-5')A synthetase gene induced by IFN and by IL-6 in M1 cells
Journal Interferon Res. 10, suppl. 1, S42 (1990)

15. **Gileadi O, Schneider T, de Groot N, Chebath J, Revel M and Hochberg A**
Interferon beta-2 in differentiating human cytotrophoblast

16. **Cohen B, Gothelf Y, Vaiman D, Chen L, Revel M and Chebath J**
Interleukin-6 induces the (2'-5') oligo A synthetase gene in M1 cells through an effect on the interferon-responsive enhancer
Cytokine 3, 83-91 (1991)

17. **Gothelf Y, Raber J, Chen L, Schattner A, Chebath J and Revel M**
Terminal differentiation of myelokeukemic M1 cells induced by IL-6: Role of endogenous interferon

18. **Revel M, Gothelf Y, Chebath J and Michalevicz R**
IL-6 potential for differentiation of acute myeloid leukemia

Ca 40 J. Kark, Hebrew University of Jerusalem
 J. Wahrendorf, DKFZ, Heidelberg

1. **Kark JD, Yaari S and Goldbourt U**
Are lean smokers at increased risk of lung cancer? The Israel Civil Servant Cancer Study

Ca 41 D. Wallach, Weizmann Institute of Science, Rehovot
 H. Holtmann, Medizinische Hochschule, Hannover
 D. Männel, DKFZ, Heidelberg

1.* **Wallach D, Aderka D, Rubinstein M, Engelmann H, Shemer-Avi Y, Sarov I and Holtmann H**
Mechanisms involved in regulation of the response to tumor necrosis factor. Possible roles for prostaglandin production in sensitization to TNF effects and for a specific TNF-binding protein in protection from them

Mechanisms which take part in regulation of the response to tumor necrosis factor
Lymphokine Res. 8, 359-363 (1989)

3. *Englmann H, Aderka D, Rubinstein M, Rotman D and Wallach D*
A tumor necrosis factor (TNF)-binding protein purified to homogeneity from human urine protects cells from TNF toxicity

4. *Yuhas Y, Holtmann H, Shemer-Avni Y, Sarov I and Wallach D*
Inhibition of tumor necrosis factor-induced cell-killing by tryptophan and indole
Eur.Cytokine Net. 1, 35-40 (1990)

5. *Englmann H, Novick D and Wallach D*
Two tumor necrosis factor binding proteins purified from human urine. Evidence for immunological cross reactivity with cell surface tumor-necrosis-factor receptors
J. Biol. Chem. 265, 1531-1536 (1990)

Implications for persistent chlamydial infections of phagocyte-microorganism interplay

Antibodies to a soluble form of a tumor necrosis factor (TNF) receptor have TNF-like activity
J.Biol.Chem. 265, 14497-14504 (1990)

Soluble forms of tumor necrosis factor receptors (TNF-Rs). The cDNA for the type I TNF-R, cloned using amino acid sequence data of its soluble form, encodes both the cell surface and a soluble form of the receptor
EMBO J. 9, 3269-3278 (1990)

9. *Holtmann R, Szamel M and Resch K*
Cytokine receptors

Mechanisms controlling the level of receptors for tumor necrosis factor

The gene for the type 1 tumor necrosis factor receptor (TNF-R1) is localized on band 12p13
Human Genetics 87, 231-233 (1991)

The gene for the type II (p75) tumor necrosis factor receptor (TNF-RII) is localized on band 1p36.2-p.36.3
Human Genetics 87, 623-624 (1991)

13. *Koenig M, Wallach D, Resch K and Holtmann H*
Induction of hyporesponsiveness to an early post-binding effect of tumor-necrosis-factor (TNF) by TNF and interleukin 1
Increased serum levels of soluble receptors for tumor necrosis factor in cancer patients
Cancer Res. 51, 5602-5607 (1991)

15. Aderka D, Engelmann H, Maor Y, Brakebush C and Wallach D
Stabilization of the bioactivity of tumor necrosis factor (TNF) by its soluble receptors
J.Exp.Med. 175, 323-329 (1992)

Cytoplasmic truncation of the p55 tumor necrosis factor (TNF) receptor abolishes signalling,
but not induced shedding of the receptor
EMBO J. 11, 943-950 (1992)

Selective decrease in cell surface expression and mRNA level of the 55 kDa tumor necrosis factor receptor during differentiation of HL-60 cells into macrophage-like but not granulocyte-like cells

18. Schreck R, Meier B, Maennel DN, Droege W and Bauerle PA
Dithiocarbamate as potent inhibitors of nuclear factor-kB activation in intact cells
J.Exp.Med, 175, 1181-1194 (1992)

A common epitope on human tumor necrosis factor alpha and an autoantigen "S antigen/arrestin" induces tumor necrosis factor alpha production
J.Autoimmun, 5, 15-26 (1992)

20. Winzen R, Wallach D, Kemper O, Resch K and Holtmann H
Selective up-regulation of the 75-kDa tumor necrosis factor (TNF) receptor and its mRNA by TNF and IL-1

Dual role of the p75 tumor necrosis factor (TNF) receptor in the induction of TNF cytotoxicity

Ca 42 G. Berke, Weizmann Institute of Science, Rehovot
W. Dröge, DKFZ, Heidelberg

1. Schick B and Berke G
The lysis of cytotoxic T lymphocytes and their blasts by cytotoxic T lymphocytes
Immunology 71, 428-433 (1990)

2. Berke G
T-cell mediated cytotoxicity

3. Berke G
The mechanism of lymphocyte-mediated killing: Lymphocyte-triggered internal target disintegration

4. Berke G, Rosen D and Ronen D
Mechanism of Lymphocyte-Mediated Cytolysis: Functional cytolytic T cells lacking perforin and granzymes
Immunology 78, 105-112 (1993)

Abnormal glutathione and sulfate levels after interleukin-6 treatment and in tumor-induced cachexia

Ca 43 E. Kedar, Hebrew University of Jerusalem
V. Schirrmacher, DKFZ, Heidelberg

1.* Gazit Z, Weiss DW, Shouval D, Yechekl M, Schirrmacher V, Notter M, Walter J
and Kedar E
Chemo-adoptive immunotherapay of nude mice implanted with human colorectal carcinoma
and melanoma cell lines

2. Kedar E and Klein E
Cancer Immunotherapy: Are the results discouraging? Can they be improved? A review

Ca 44 R.N. Apte, Ben-Gurion University, Beer-Sheva
M. Zöller, DKFZ, Heidelberg

1. Douvdevani A, Huleihel M, Segal S and Apte RN
Constitutive interleukin-1-alpha expressison in fibroblastoid lines: Regulation by oncogenes
In "Molecular and Cellular Biology of Cytokines", J.J. Oppenheim, M.C. Powanda, M.J. Kluger,

2. Douvdevani A, Huleihel A, Segal M and Apte RN
Aberrations in interleukin-1 expression in oncogene-transformed fibrosarcoma lines:
Constitutive interleukin-1-alpha transcription and manifestation of biological activity

3. Huleihel M, Douvdevani A, Segal S and Apte RN
Regulation of interleukin-1 generation in immune-activated fibroblasts

4. Apte RN and Huleihel M
Immunoregulatory functions of fibroblasts: Implications for theumatoid arthritis

5.* Zoeller M, Douvdevani A, Segal S and Apte RN
Interleukin-1 produced by tumorigenic fibroblasts influences tumor rejection
Int.J.Cancer 50, 443-449 (1992)

6.* Zoeller M, Douvdevani A, Segal S and Apte RN
Interleukin-1 production by transformed fibroblasts. II. Influence on antigen presentation
and T-cell-mediated anti-tumor response
Int.J.Cancer 50, 450-457 (1992)

7.* Douvdevani A, Huleihel M, Zoeller M, Segal S and Apte RN
Reduced tumorigenicity of fibrosarcomas which constitutively generate IL-1-alpha either
spontaneously or following IL-1-alpha gene transfer
Int.J.Cancer 52, 822-830 (1992)

8. Apte RN, Douvdevani A, Huleihel M, Fima E, Hacham M, Shimoni N and Segal S
IL-1 and pro-inflammatory cytokines produced by primary and transformed fibroblasts
abrogate the tumorigenic potential of fibrosarcomas
IL-1 and pro-inflammatory cytokines produced by primary and transformed fibroblasts
abrogate the tumorigenic potential of fibrosarcoma

10.* Apte RN, Douvdevani A, Zöller M, White RM, Dvorkin T, Shimoni N, Fima E,
Hacham M, Huleihel M, Benharroch D, Vornov E and Segal S
Involvement of immune responses in the eradication of IL-1 alpha gene-transduced tumor
cells. Mechanisms of tumor rejection and immunotherapeutical implications
Folia Biologica (Praha) 40, 1-18 (1994)

11.* Apte RN, Douvdevani A, Zöller M, White RM, Dvorkin T, Shimoni N, Fima E,
Hacham M, Huleihel M, Benharroch D, Vornov E and Segal S
Cytokine-induced tumor immunogenecity: Interleukin-1 alpha expressed by fibrosarcoma
cells confers reduced tumorigenicity

12.* Apte RN, Douvedeni A, Zöller M, White RM, Dvorkin T, Shimoni N, Fima E,
Hacham M, Voronov E and Segal S
Immune recognition and rejection of IL-1 alpha gene transduced tumor cells
In "Cytokine-Induced Tumor Immunogenecity. From Exogenous Molecules to Gene

13. Apte RN
Mechanisms of cytokine production by fibroblasts. Implications to normal connective tissue
homeostasis and pathological conditions

Ca 45 P. Rozen, Ichilov Hospital, Tel Aviv
H. Boeing, DKFZ, Heidelberg

1.* Lubin F, Boeing H and Rozen P
Design and background of the Tel-Aviv-Heidelberg dietary study of colonic adenoma patients
and calcium intervention trial
In "Large Bowel Cancer Policy, Prevention, Research and Treatment", P. Rozen, C.B. Reich,

2. Rozen P
Short-term calcium-intervention studies, in animals and humans, using epithelial
proliferation as a biomarker of response. The initiation of a calcium intervention trial in
adenoma patients
In "Calcium, Vitamin D and Colon Cancer", M. Lipkin, C.W. Boone, G. Kelloff, W. Malone and

3. Rozen P and Lubin F
Tel-Aviv-Heidelberg studies of adenoma dietary etiology and calcium intervention for
prevention of adenoma recurrence
In "Recent Progress in Colorectal Cancer", F.P. Rossini, ed., Elsevier, Amsterdam, pp. 175-
178 (1992)

D
A new dietary model to study colorectal carcinogenesis: Experimental design, food
preparation, and experimental findings

Differing proliferative responses in the proximal and distal colons of growing rats fed the human food eaten by adenoma patients
Digestive Diseases and Sciences 41, 1057-1064 (1996)

Effect of a long-term, placebo controlled calcium intervention on sigmoidal cell proliferation in patients with sporadic colorectal adenomatous polyps
Gut 38, 396-402 (1996)

Nutritional and lifestyle habits and water-fiber interaction in colorectal adenoma etiology
Cancer Epidemiology, Biomarkers & Prevention 6, 79-85 (1997)

8. Rozen P, Lubin F, Papo N and Zajicek G
Rectal epithelial proliferation in persons with or without a history of adenoma and its association with diet and lifestyle habits
Cancer 83, 1319-1327 (1998)

Ca 46 A. Ben-Ze'ev, Weizmann Institute of Science, Rehovot
J. Kartenbeck, W. Franke, DKFZ, Heidelberg

1. Rodriguez Fernandez JL, Geiger B, Salomon D and Ben-Ze'ev A
Overexpression of vinculin suppresses cell motility in Balb/C 3T3 cells

2. Glück U, Rodriguez Fernandez JL, Pankov R and Ben-Ze'ev A
Induction of adherens junction protein expression in growth-activated 3T3 cells and in regenerating liver

3.* Rodriguez Fernandez JL, Geiger B, Salomon D, Sabanay I, Zoeller M and Ben-Ze'ev A
Suppression of tumorigenicity in transformed cells after transfection with vinculin cDNA

4. Ben-Ze'ev A
Cytoarchitecture and signal transduction
Critical Reviews in Eukaryotic Gene Expression 2, 265-281 (1992)

5. Geiger B, Ginsberg D, Ayalon O, Volberg T, Rodriguez Fernandez JL, Yarden Y and Ben-Ze'ev A
Cytoplasmic control of cell adhesion

Complexity and expression patterns of the desmosomal cadherins

7. Glück U, Kwiatkowski DJ and Ben-Ze'ev A
Suppression of tumorigenicity in simian virus 40-transformed 3T3 cells transfected with alpha-actinin cDNA

8. Buxton RS, Cowin P, Franke WW, Garrod DR, Green KJ, King IA, Koch PJ, Magee AI, Rees DA, Stanley JR, Steinberg MS
Nomenclature of the desmosomal cadherins

9. Rodriguez Fernandez JL, Geiger B, Salomon D and Ben-Ze'ev A
Suppression of vinculin expression by antisense transfection confers changes in cell morphology, motility, and anchorage dependent growth

Desmoglein

11. Theis DG, Koch PJ and Franke WW
Differential synthesis of type 1 and type 2 desmocollin mRNAs in human stratified epithelia
Int.J.Dev.Biol. 37, 101-110 (1993)

Cytoskeletal architecture and epithelial differentiation: Molecular determinants of cell interaction and cytoskeletal filament anchorage

13. Ben-Ze’ev A
The role of the cytoskeleton in the relationship between cell shape, gene expression and morphogenesis

Changes in adhesion plaque protein levels regulate cell motility and tumorigenicity

15. Schäfer S, Koch P and Franke WW
Identification of the ubiquitous human desmoglein, DSG2, and the expression catalogue of the desmoglein subfamily of desmosomal cadherins

The desmosome and the syndesmos: Cell junctions in normal development and in malignancy

17. Troyanovsky SM, Troyanovsky RB, Eshkind LG, Krutovskikh VA, Leube RE and Franke WW
Identification of the plakoglobin-binding domain in desmoglein and its role in plaque assembly and intermediate filament anchorage

Targeted disruption of the vinculin genes in F9 and embryonic stem cells changes cell morphology, adhesion and locomotion

19. Troyanovsky SM, Troyanovsky RB, Eshkind L, Leube RE and Franke WW
Identification of amino acid sequence motifs in desmocollin, a desmosomal glycoprotein, that are required for plakoglobin binding and plaque formation

Regulation of adherens junction protein levels: role in motility and tumorigenicity

21. Simcha I, Geiger B, Levenberg-Yehuda S, Salomon D and Ben-Ze'ev A
Suppression of tumorigenicity by plakoglobin: An augmenting effect of N-cadherin
22. Chitaev NA, Leube RE, Troyanovsky RB, Eshkind LG, Franke WW and Troyanovsky SM
The binding of plakoglobin to desmosomal cadherins: patterns of binding sites and topogenic potential

Ca 47 Y. Shiloh, Tel-Aviv University
A. Weith, M. Schwab, DKFZ, Heidelberg

Novel DNA sequences at 10q26 are amplified in human gastric carcinoma cell lines:
Molecular cloning by competitive DNA reassociation

2. Haman U, Wenzel A, Frank R and Schwab M
The MYCN protein of human neuroblastoma cells is phosphorylated by casein kinase II in the central region and at scrinc 367
Oncogene, 6, 1745-1751 (1991)

The N-myc oncoprotein is associated in vivo with the phosphoprotein Max(p20/22) in human neuroblastoma cells
EMBO J. 10, 3703-3712 (1991)

DNA sequences amplified in cancer cells: an interface between tumor biology and human genome analysis

5. Bar-Am L, Mor O, Yeger H, Shiloh Y and Avivi L
Detection of amplified DNA sequences in human tumor cell lines by fluorescent in situ hybridization
Genes, Chromosomes and Cancer, 4, 314-320 (1992)

6. Amler LC, Shibasaki Y, Savelyeva L, and Schwab M
Amplification of the N-myc gene in human neuroblastomas: tandemly repeated amplicons within homogeneously staining regions on different chromosomes with the retention of single copy gene at the resident site
Mutation Res, 276, 291-297 (1992)

7. Schwab M
Molecular cytogenetics of human neuroblastoma

DNA amplification in human gastric carcinomas

9. Schwab M
Amplification of N-myc as a prognostic marker for patients with neuroblastoma

Activation of gene transcription by the amino terminus of the N-myc protein does not require association with the protein encoded by the retinoblastoma suppressor gene RB1
Oncogene 8, 2833-2838 (1993)
MYCN is retained in a single copy at chromosome 2 band p23-24 during amplification in human neuroblastoma cells

Ca 48 J. Tal, Ben-Gurion University, Beer-Sheva
J. Schlehofer, DKFZ, Heidelberg

1. Walz C and Schlehofer JR
Modification of some biological properties of HeLa cells containing adeno-associated virus DNA integrated into chromosome-17
J.Virol, 66, 2990-3002 (1992)

2. Schlehofer JR
Tumor suppressive properties of adeno-associated viruses
Mutation Research 305, 303-313 (1994)

Ca 49 B. Geiger, Weizmann Institute of Science, Rehovot
W. Franke, DKFZ, Heidelberg

1. Geiger B, Ginsberg D, Salomon D and Volberg T
The molecular basis for the assembly and modulation of adherens-type junctions

2. Ginsberg D, Desimone D and Geiger B
Expression of a novel cadherin (EP-cadherin) in unfertilized eggs and early Xenopus embryos
Development 111, 315-325 (1991)

3.* Kartenbeck J, Schmelz M, Franke WW and Geiger B
Endocytosis of junctional cadherins in bovine kidney epithelial (MDBK) cells cultured in low Ca2+ ion medium

4. Geiger B and Ginsberg D
The cytoplasmic domain of adherens-type junctions
Cell Motility and the Cytoskeleton 20, 1-6 (1991)

5. Goncharova EJ, Kam Z and Geiger B
The involvement of adherens junction components in myofibrillogenesis in cultured cardiac myocytes
Development 114, 173-183 (1992)

The effect of tyrosine-specific protein phosphorylation on the assembly of adherens-type junctions
EMBO J. 11, 1733-1742 (1992)

Extrajunctional distribution of N-cadherin in cultured human endothelial cells
J.Cell.Sci. 102, 7-17 (1992)

8. Geiger B and Ayalon O
Cadherins

9. Rodriguez Fernandez JL, Geiger B, Salomon D and Ben-Ze’ev A
Overexpression of vinculin suppresses cell motility in 3T3 cells
10.* Rodriguez Fernandez JL, Geiger B, Salomon D, Sabanay I, Zöller M and Ben-Ze'ev A
Suppression of tumorigenicity in transformed cells following transfection with vinculin cDNA

11. Fouquet B, Zimbelmann R and Franke WW
Identification of plakoglobin in oocytes and early embryos of Xenopus laevis: Maternal
expression of a gene encoding a junctional plaque proteins
Differentiation 51, 187-194 (1992)

Desmosomal proteins - mediators of intercellular coupling and intermediate filament
anchorage

Complexity and expression patterns of the desmosomal cadherins

Suppression of vinculin expression by antisense transfection confers changes in cell
morphology, motility and anchorage-dependent growth of 3T3 cells

15. Buxton RS, Cowin P, Franke WW, Garrod DR, Green KJ, King IA, Koch PJ, Magee AI, Rees DA, Stanley JR, Steinberg MS
Nomenclature of the desmosomal cadherins

16. Schmelz M, Franke WW
Complexus adhaerentes, a new group of desmoplakin-containing junctions in endothelial
cells. I. The syndesmos connecting reticulothelial cells of lymph nodes

17. Theis DG, Koch PJ, Franke WW
Differential synthesis of type 1 and type 2 desmocollin mRNAs in human stratified epithelia
Int.J.Dev.Biol. 37, 101-110 (1993)

18. Troyanovsky SM, Eshkind LG, Troyanovsky RB, Leube RE, Franke WW
Contributions of cytoplasmic domains of desmosomal cadherins to desmosome assembly and
intermediate filament anchorage
Cell 72, 561-574 (1993)

19. Koch PJ, Franke WW
Desmosomen: Von der Ultrastruktur zum molekularen Bauplan
In "Zellbiologie und Klinische Pharmakologie", H.J. Dengler, ed, Gustav Fisher Verlag,

Spatial and temporal relationships between cadherins and PECAM-I in cell-cell junctions of
human endothelial cells

A functional test for maternally inherited cadherin in Xenopus shows its importance in cell
adhesion at the blastula stage
Development 120, 49-57 (1994)

22. Schäfer S, Koch PJ, Franke WW
Identification of the ubiquitous human desmoglein, Dsg2, and the expression catalogue of
the desmoglein subfamily of desmosomal cadherins

Complexus adhaerentes, a new group of desmoplakin-containing junctions in endothelial cells: II. Different types of lymphatic vessels
Differentiation 57, 97-117 (1994)

Ca 50 M. Aboud, Ben-Gurion University, Beer-Sheva
R. Flügel, M. Löchelt, DKFZ, Heidelberg

Interactions between retroviruses and environmental carcinogens and their role in animal and human leukemogenesis
Leukemia Res. 16, 1061-1069 (1992)

Regulatory elements and leukemogenicity of HTLV-I and HTLV-II
J.Viral Dis. 1, 31-49 (1993)

3.* Löchelt M, Aboud M and Flügel RM
Increase in basal transcriptional act of the human foamy virus internal promoter by the homologous long terminal repeat promoter in cis
Nucleic Acids Res. 21, 4226-4230 (1993)

4.* Löchelt M, Flügel MR and Aboud M
The human foamy virus internal promoter directs the expression of the functional Bel-1 trans-activator and bet protein early after infection

5. Feldman G and Aboud M
Stimulation of HTLV-I expression by subtoxic dose of 3-methylcholanthrene
Leukemia Res. 17, 429-435 (1993)

6.* Wolfson M, Lev M, Avinoa I, Malik Z, Löchelt M, Flügel RM and Aboud M

7. Mor-Vaknin N and Aboud M
Effect of 3-methylcholanthrene on the expression and structure of HTLV-I in infected cells

8.* Kogel D, Aboud M and Flügel RM
Molecular biological characterization of foamy virus reverse transcriptase and ribonuclease H domains

9.* Revasova T, Dombrovsky A, Loechelt M, Flügel RM and Aboud M
Tax-independent stimulation of human T-cell leukemia virus type-I-expression and differential effects on its infectivity by subtoxic and toxic doses of 3-methylcholanthrene

10.* Dias HW, Aboud M and Fluegel RM
Analysis of the phylogenetic placement of different spumaretroviral genes reveals complex pattern of foamy virus evolution
Virus Genes 11, 183-190 (1996)

11.* Koegel D, Aboud M and Fluegel RM
Mutational analysis of the reverse transcriptase and ribonuclease H domains of human foamy virus
Ca 51 M. Oren, Weizmann Institute of Science, Rehovot
M. Schwab, R. Corvi, DKFZ, Heidelberg

1. **Barak Y, Juven T, Haffner R, Oren M**
mdm2 expression is induced by wild type p53 activity
EMBO J. 12, 461-468 (1993)

Mechanisms of action of p53

3. **Juven T, Barak Y, Zauberman A, George D and Oren M**
Wild type p53 can mediate sequence-specific transactivation of an internal promoter within the mdm2 gene
Oncogene 8, 3411-3416 (1993)

Mutations of the p53 tumor suppressor gene in neoplasms of the human nervous system
Mol.Carcinogenesis 8, 74-80 (1993)

5. **Barker PE, Savelyeva L and Schwab M**
Translocation junctions cluster at the distal short arm of chromosome 1 (Ip36.1-2) in human neuroblastoma cells
Oncogene 8, 3353-3358 (1993)

Mutations of the p53 tumor suppressor gene in neoplasms of the human nervous system
Mol.Carcinogenesis 8, 74-80 (1993)

7. **Barker PE, Schwab M**
Junction mapping of translocation chromosomes by fluorescence in situ hybridization and computer image analysis in human solid tumors

8. **Savelyeva L, Corvi R and Schwab M**
Translocation involving Ip and 17q is a recurrent genetic alteration of human neuroblastoma cells

9. **Corvi R, Amler LC, Savelyeva L, Gehring M and Schwab M**
MYCN is retained in single copy at chromosome 2 band p23-24 during amplification in human neuroblastoma cells

10. **Barak Y, Gottlieb E, Juven-Gershon T and Oren M**
Regulation of mdm2 expression by p53: alternatively promoters produce transcripts with non-identical translation potential
Genes Dev.8, 1739-1749 (1994)

Non-syntenic amplification of MDM2 and MYCN in human neuroblastomas
Oncogene 10, 1081-1086 (1995)
Targets for transcriptional activation by wild-type p53: endogeneous retroviral LTR, immunoglobulin-like promoter, and an internal promoter of the mdm2 gene

A reciprocal translocation (1;15)(36.2;q24) in a neuroblastoma cell line is accompanied by DNA duplication and may signal the site of a putative tumor suppresor-gene
Oncogene 10, 1095-1101 (1995)

Reciprocal translocation at Ip36. 2/DIS160 in a neuroblastoma cell line: Isolation of a YAC clone at the break

Cytogenetic evolution of N-MYC and MDM2 amplification of the neuroblastoma tumour, LS and its cell line

Ca 52 H. Degani, Y. Salomon, Weizmann Institute of Science, Rehovot
W. Lehmann, W.E. Hull, DKFZ, Heidelberg

1. Degani H, DeJordy JO and Salomon Y
Determination of the response melanoma cells to melanocyte stimulating hormone by 31P nuclear magnetic resonance spectroscopy
J.Receptor Res. 13 (1-4), 55-68 (1993)

Signaling mechanisms controlled by melanocortins in melanoma, lacrimal, and brain astroglial cells

3. Shedd SF, Lutz NW and Hull WE
The influence of medium formulation on phosphomonoester and UDP-hexose levels in cultured human colon tumor cells as observed by 31P NMR spectroscopy
NMR Biomed. 6, 254-263 (1993)

4. Metzger K, Angres G, Maier H and Lehmann WD
Oral cancer: risk factors and quantification of arachidonic acid metabolites in human saliva by gas chromatography/mass spectrometry

5. Lehmann WD, Metzger K, Stephan M, Beilecke U, Zalan I, Habenicht AJR and Fürstenberger G
Quantitative lipoxygenase product profiling by gas chromatography negative-ion chemical ionization mass spectrometry

Lipoxygenase products in human saliva - patients with oral cancer compared to controls

7. Tyagi RK, Azrad A, Degani H and Salomon Y
Simultaneous extraction of cellular lipids and water soluble metabolites: Evaluation by NMR spectroscopy

8. Metzger K, Rehberger PA, Erben G, Lehmann WD
Identification and quantification of lipid sulfate esters by electrospray MS/MS techniques: cholesterol sulfate

Ca 53 S. A. Lamprecht, Ben-Gurion University, Beer-Sheva
G. Fürstenberger, F. Marks, DKFZ, Heidelberg

TGFβ1 and skin carcinogenesis: Antiproliferative effect in vitro and TGF-β1 mRNA expression during epidermal hyperproliferation and multistage tumorigenesis
Molecular Carcinogenesis 4, 129-137 (1991)

The role of endogenous factors in skin carcinogenesis

3. Schwartz B, Ben Harroch D, Prinsloo I, Cagnano E and Lamprecht SA
Phosphotyrosine, p62 c-myc and p21 c-Ha-ras proteins in colonic epithelium of normal and dimethylhydrazine-treated rats: an immunohistochemical approach

Ca 54 M. Liscovitch, Weizmann Institute of Science, Rehovot
V. Kinzel, DKFZ, Heidelberg

1. Kaszkin M, Seidler L, Kast R and Kinzel V
Epidermal growth factor-induced production of phosphatidylalcohol by HeLa cells and A431 cells through activation of phospholipase D

2. Plein P, Kaszkin M and Kinzel V
Accumulation of ester- and ether-linked phosphatidates by HeLa cells in response to ionophore A23187 through activation of phospholipase D
Biological Chemistry Hoppe-Seyler 373, 151-157 (1992)

Mobilization of diacylglycerol in intact HeLa cells by exogenous phospholipase C from Cl. perfringens is accompanied by release of fatty acids including arachidonic acid

Proposed role of phosphatidic acid in the extracellular control of the transition from G2-phase to mitosis exerted by epidermal growth factor in A431 cells
Cancer Res. 52, 5627-5634 (1992)

Distinct mechanisms of phospholipase D activation and attenuation utilized by different mitogens in NIH-3T3 fibroblasts

Up-regulation of phospholipase D induced by over-expression of protein kinase C-alpha. Studies in intact cells and in detergent-solubilized membranes in vitro
J.Biol.Chem. 268, 12560-12564 (1993)

Phospholipase D-mediated hydrolysis of phosphatidylcholine: role in cell signaling
J.Lipid Medial. 8, 177-182 (1993)

8. Liscovitch M and Chalifa V
Signal-activated phospholipase D

9. Barth H and Kinzel V
Phorbol ester TPA rapidly prevents activation of \(p34^{\text{cdc2}} \) histone HI kinase and concomitantly the transition from Gi phase to mitosis in synchronized HeLa cells

10. Williger B, Reich R, Neeman M, Bercovici T and Liscovitch M
Release of gelatinase A (matrix metalloproteinase 2) induced by photolysis of caged phosphatidic acid in HT 1080 metastatic fibrosarcoma cells

11. Barth H and Kinzel V
Epidermal growth factor rapidly impairs activation of \(p34^{\text{cdc2}} \) protein kinase in HeLa cells at the G2-M-boundary

Inhibition of cdc25-C phosphatase in the immediate Gi-phase delay induced by the exogenous factors EGF and phorbol ester TPA

Phosphatidic acid mobilized by phospholipase D is involved in the TPA-induced G2 delay of A431 cells

Ca 55 J. Bar-Tana, Hebrew University of Jerusalem
D. Keppeler, DKFZ, Heidelberg

Transport and \textit{in vivo} elimination of cysteiny1 leukotrienes

2. Keppeler D
Leukotrienes: biosynthesis, transport, inactivation, and analysis

3. Hertz R, Kalderon B and Bar-Tana J
Thyromimetic effect of peroxisome proliferators
Biochimie 75, 257-261 (1993)

Inhibition by cyclosporin A of adenosine triphosphate-dependent transport from the hepatocyte into bile
Gastroenterology 104 1507-1514 (1993)

5. Böhme M, Büchler M, Müller M and Keppler D
Differential inhibition by cyclosporins of primary-active ATP-dependent transporters in the hepatocyte canalicular membrane

Peroxisomal leukotriene degradation: Biochemical and clinical implications

ATP-Dependent export pumps and their inhibition by cyclosporins

8.* Jedlitschky I, Leier M, Böhme C, Buchholz C, Bar-Tana J and Keppler D
Hepatobiliary elimination of the peroxisome proliferator nafenopin by conjugation and subsequent ATP-dependent transport across the canalicular membrane

The effect of beta, beta'-tetramethyl hexadecanedioic acid (MEDICA 16) on plasma very low density lipoprotein metabolism in rats: Role of apolipoprotein C-III

10. Hertz R, Berman I and Bar-Tana J
Transcriptional activation by amphipathic carboxylic peroxisome proliferators is induced by the free acid rather than the acyl-CoA derivative

11. Leier I, Jedlitschky G, Buchholz U and Keppler D
Characterization of the ATP-dependent leukotrine C4 export carrier in mastocytoma cells

12. Büchler M, Böhme M, Ortlepp H and Keppler D
Functional reconstitution of ATP-dependent transporters from the solubilized hepatocyte canalicular membrane

ATP-dependent transport of glutathione S-conjugates by the multidrug resistance-associated protein
Cancer Research 54, 4833-4836 (1994)

The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates
J.Biol.Chem. 269, 27807-27810 (1994)

15. Hertz R, Bishara-Shieban J and Bar-Tana J
Mode of action of peroxisome proliferators as hypolipidemic drugs: Suppression of apolipoprotein C-III

Expression of the MRP gene-encoded conjugate export pump in liver and its selective absence from the canalicular membrane in transport-deficient mutant hepatocytes

17.* Hertz R, Berman I, Keppler D and Bar-Tana J
Activation of gene transcription by prostacyclin analogues is mediated by the peroxisome proliferators activated receptor (PPAR)
18. Hertz R, Nikodem V, Ben-Ishai A, Berman I and Bar-Tana J
Thyromimetic mode of action of peroxisome proliferators: Activation of malic enzyme gene transcription

Transport of glutathione, glucuronate, and sulfate conjugates by the MRP gene-encoded conjugate export pump
Cancer Res. 56, 988-994 (1996)

Transcriptional suppression of the transferrin gene by hypolipidemic peroxisome proliferators

Ca 56 I. Ginzburg, Weizmann Institute of Science, Rehovot
H. Ponstingl, DKFZ, Heidelberg

Complete sequence of 3'-untranslated region of Tau from rat central nervous system

Short- and long-term mechanisms of Tau regulation in PC 12 cells

3. Bischoff FR, Krebber H, Smirnova E, Dong W and Ponstingl H
Co-activation of RanGTPase and inhibition of GTP dissociation by Ran-GTP binding protein RanBP1
EMBO J. 14, 705-725 (1995)

4. Bischoff FR, Krebber H, Kempf T and Ponstingl H
Human RanGTPase activating protein RanGAP1 is a homologue of yeast Rnalp involved in mRNA processing and transport

5. Sadot E, Heicklen-Klein A, Barg J, Lazarovici P and Ginzburg I
Identification of a Tau promoter region mediating tissue-specific-regulated expression in PC12 cells

6. Krebber H and Ponstingl H
Ubiquitous expression and testis-specific alternative polyadenylation of mRNA for the human Ran GTPase activator RanGAP1
Gene 180, 7-11 (1996)

Localization of genes encoding the proteins Ran and RanBP2 to human chromosomes 6p21 and 2q11-q13, respectively, by fluorescence in situ hybridization
Genomics 43, 247-248 (1997)

8. Sadot E, Jaaro H, Seger R and Ginzburg I
Ras-signaling pathways: Positive and negative regulation of tau expression in PC 12 cells

Assignment of the human serine/threonine protein phosphatase 4 gene (PPP4C) to chromosome 16pl-p12 by fluorescence in situ hybridization

Localization of the novel serine/threonine protein phosphatase 6 gene (PPP6C) to human chromosome Xq22.3
Genomics 41, 296-297 (1997)

Ca 57 G. Neufeld, Technion, Haifa
R. Schwartz-Albiez (V. Schirrmacher), DKFZ, Heidelberg

Variations in the size and sulfation of heparin modulate the effect of heparin on the binding of VEGF 165 to its receptors

Heparin modulates the interaction of VEGF_{165} with soluble and cell associated flk-1 receptors
J.Biol.Chem. 269, 12456-12461 (1994)

Vascular endothelial growth factor and its receptors
Prog.Growth Factor Res. 5, 89-97 (1994)

VEGF_{121}, a vascular endothelial growth factor (VEGF) isoform lacking heparin binding ability, requires cell-surface heparan-sulfates for efficient binding to the VEGF receptors of human melanoma cells

Platelet factor-4 inhibits the mitogenic activity of VEGF_{121} and VEGF_{165} using several concurrent mechanisms

Similarities and differences between vascular endothelial growth factor splice variants
Cancer Metastasis Rev. 15, 153-158 (1996)

Modulated glycosylation of proteoglycans during differentiation of human B lymphocytes

Ca 58 E. Keshet, Hebrew University of Jerusalem
E. Spiess, DKFZ, Heidelberg

Cathepsin B activity in human lung tumor cell lines. Ultrastructural localization, pH sensitivity and inhibitor status at the cellular level
J.Histochem.Cytochem. 42, 917-929 (1994)

2. Ebert W, Knoch H, Werle B, Trefz G, Muley Th and Spiess E
Prognostic value of increased lung tumor Cathepsin B

3. Werle B, Ebert W, Klein W and Spiess E
Cathepsin B in tumors, normal tissue and isolated cells from the human lung
Imbalance between cathepsin B and cystein proteinase inhibitors is of prognostic significance in human lung cancer
Int.J.Oncology 5, 77-85 (1994)

5. Werle B, Ebert W, Klein W and Spiess E
Assessment of cathepsin L activity by use of the inhibitor CA-074 compared to cathepsin B activity in human lung tumor tissue

6. Ulbricht B, Spiess E, Schwartz-Albiez R and Ebert W
Quantification of intracellular cathepsin activities in human lung tumor cell lines by flow cytometry

7. Becharach E, Itin A and Keshet E
Apposition-dependent induction of PAT-1 expression: A mechanism for balancing pericellular proteolysis
Blood 92, 939-945 (1998)

Tomography of cells by confocal laser scanning microscopy and computer-assisted image reconstruction. Localization of cathepsin B in invading tumor cells in vitro
J.Histochem.Cytochem. 45, 975-983 (1997)

9. Ulbricht, B, Hagmann, W, Ebert, W. and Spiess, E
Differential secretion of cathepsins B and L from normal and tumor human lung cells stimulated by 12(S)-hydroxyeicosatetraenoic acid (12(S)-HETE)

10. Strohmaier A-R, Spring H and Spiess E
Three dimensional analysis of the substrate dependent invasive behaviour of a human lung tumor cell line with a confocal laser scanning microscope

Ca 59 A. Kimchi, Weizmann Institute of Science, Rehovot
N. Fusenig, DKFZ, Heidelberg

1.* Landesman Y, Bringold F, Kimchi A
P53 undergoes epitopic changes in vitro by sodium-vanadate
Oncogene 9, 1241-1245 (1994)

2. Deiss LP, Feinstein E, Berissi H and Kimchi A
Identification of a novel serine/threonine kinase and a novel 15 Kd protein as potential mediators of the interferon-gamma-induced cell death
Genes Dev. 9, 15-30 (1995)

3. Tiefenbrun N, Melamed D, Levy N, Resnitzky D, Hoffman I, Reed SI and Kimchi A
Interferon-a suppresses cyclin D3 and cdc25A genes leading to a reversible GO-like arrest

4. Landesman Y, Bringold F, Milne DD and Meek DA
Modifications of p53 protein and accumulation of p21 and gadd45 mRNA in TGF-pl growth inhibited cells
Cellular Signalling 9, 291-298 (1997)
Ca 60 S. Lavi, Tel Aviv University
 R. Heilbronn, Max-Planck-Institut fur Biochemie, München
 J. Kleinschmidt, DKFZ, Heidelberg

 Cell lines inducibly expressing the adeno-associated virus (AAV) rep gene: requirements for
 productive replication of rep-negative AAV-mutants
 J.Virol. 68, 7169-7177 (1994)
2. Kleinschmidt JA, Möhler M, Weindler FW and Heilbronn R
 Sequence elements of the adeno-associated virus rep gene required for suppression of
 herpes simplex virus-induced DNA amplification
 Mutational analysis of Adeno-associated virus (AAV) Rep protein mediated inhibition of
 heterologous and homologous promoters
 J.Virol. 69, 5485-5496 (1995)

Ca 61 V. Rotter, Weizmann Institute of Science, Rehovot
 K.H. Richter (F. Marks), DKFZ, Heidelberg

 Wild type p53 functions as a control protein in the differentiation pathway of the B-cell
 lineage
 Oncogene 8, 3297-3305 (1993)
2. Richter KH, Rehberger PA and Marks F
 Differentiation of murine keratinocytes in culture is independent of tumor suppressors p53
 and the Retinoblastoma protein
3. Aloni-Grinstein R, Schwartz D and Rotter V
 Accumulation of wild type p53 protein, upon 7-irradiation, induces a G2 dependent
 immunoglobulin kappa light chain gene expression
 EMBO J. 14, 1392-1401 (1995)
 The augmented DNA binding activity of an alternative spliced C'-terminal p53 is blocked by
 regular spliced p53 protein
5. Elkind NB, Goldfinger N and Rotter V
 Spot-1, a novel NLS-binding protein that interacts with p53 through a domain encoded by
 p(CA)n repeats
 Oncogene 11, 841 -851 (1995)

Ca 62 B.-Z. Shilo, Weizmann Institute of Science, Rehovot
 B. Mechler, DKFZ, Heidelberg

1. Raz E and Shilo B-Z
 Establishment of ventral cell fates in the Drosophila embryonic ectoderm requires DER, the
 EGF receptor homolog
The *Drosophila lethal(2) giant larvae* tumor suppressor protein forms homo-oligomers and is associated with nonmuscle myosin 11 heavy chain

Secreted Spitz triggers the DER signaling pathway and is a limiting component in embryonic ventral ectoderm determination
Genes and Development 9, 1518-1529 (1995)

Inhibition of *Drosophila* EGF receptor activation by the secreted protein Argos

The role of *yan* in mediating the choice between cell division and differentiation
Development 121, 3947-3958 (1995)

A Human homologue of the *Drosophila* tumor suppressor gene l(2)gl maps to 17pl 1.2-12 and codes for a cytoskeletal protein that associates with nonmuscle myosin II heavy chain Oncogene 11, 291-301 (1995)

7. Kalmes A, Merdes G, Neumann B, Strand D and Mechler BM
A serine-kinase associated to the p12701(2)gl tumor suppressor of *Drosophila* may regulate the binding of p127 to nonmuscle myosin II heavy chain and the attachment of p127 to the plasma membrane

Argos transcription is induced by the *Drosophila* EGF receptor pathway, to form an inhibitory feedback loop

EGF receptor signaling induces pointed PI transcription and inactivates Yan protein in the *Drosophila* embryonic ventral ectoderm
Development 122, 3355-3362 (1996)

10. Golembo M, Raz E and Shilo B-Z
The *Drosophila* embryonic midline is the site of Spitz processing, and induces activation of the EGF receptor in the ventral ectoderm
Development 122, 3363-3370 (1996)
3. Momburg F, Roelse J, Hämmerling G and Neefjes JJ
Peptide size selection by the major histocompatibility complex-encoded peptide transporter

Analysis of the fine specificity of rat, mouse and human TAP peptide transporters

5. Obst R, Armandola EA, Nijenhuis M, Momburg F and Hämmerling G
TAP polymorphism does not influence transport of peptide variants in mice and human

6. Momburg F, Hämmerling G and Neefjes JJ
TAP peptide transporters and antigen presentation, In: RG Urban and RM Chicz (Eds), MHC
Molecules: Expression, Assembly and Function
Landes, Georgetown (USA) pp. 35-63 (1996)

7. Momburg F, Armandola EA, Post M and Hämmerling G
Residues in transporters associated with antigen processing TAP2 subunits controlling
substrate specificity

Huber C
Analysis of the MHC class I antigen presentation machinery in normal and malignant renal
cells: Evidence for deficiencies associated with transformation and progression

F, Tampé R and Huber C
Expression and function of the peptide transporters in escape variants of human renal cell
carcinoma

Ca 65 U. Zor, R. Goldmann, Weizmann Institute of Science,
Rehovot
G. Fürstenberger, F. Marks, DKFZ, Heidelberg

1.* Goldman R, Moshonov S, Chen X, Berchansky A, Fürstenberger G and Zor U
Crosstalk between elevation of [Ca^{2+}]_{i}, reactive oxygen species generation and
phospholipase A2 stimulation in a human keratinocyte cell line

Activation of MAP kinases, cPLA_{2} and reactive oxygen species formation by EGF and calcium
mobilizing agonists in a human keratinocyte cell line

3. Müller-Decker K, Scholz K, Marks F and Fürstenberger G
Differential expression of prostaglandin H synthase isozymes during multistage
carcinogenesis in mouse epidermis

4. Scholz K, Fürstenberger G, Müller-Decker K and Marks F
Differential expression of prostaglandin-H synthase isoenzymes in normal and activated
keratinocytes in vivo and in vitro
1. Apte RN, Douvdevai A, Zöller M, White RM, Dvokin T, Shimoni N, Fima E, Hacham M, Voronov E and Segal S
 Immune recognition and rejection of IL-1α gene transduced tumor cells In: Cytokine-induced tumor immunogenicity, eds Forni G, Foa R, Santoni A and Frati L

2. Apte, RN
 Mechanisms of cytokine production by fibroblasts-implications for normal connective tissue homeostasis and pathological conditions

3. Bernharroch D, Prinsloo I, Apte RN, Yermiahu T, Geffen DB Yanai-Inbar I and Gopas J
 Interleukin-1 and tumor necrosis factor-α in the Reed-Sternberg cells of Hodgkin’s disease
 Correlation with clinical and morphological “inflammatory” features

4. Apte RN
 Intracellular IL-1α in fibroblasts as a possible endogenous mediator of joint damage in rheumatoid arthritis

 Differential anti-tumor effects of Interleukin-1 (IL-1)α and IL-1β in cytokine gene-transfer approaches in tumor

 Blockade of metastasis formation by CD44 receptor globulin
 Int. J. Cancer 75, 919-924 (1998)

7. Cochlovius B, Zawadzki V, Perschl A and Zöller M
 Stable expression of a retrovirally transferred adhesion molecule in a human melanoma-specific cytotoxic T lymphocyte clone

8. Riedle S, Rösel M, Seither S and Zöller M
 Effector cell targeting by bispecific antibodies in the therapy of human malignant melanoma:
 Evaluation in the SCID mouse model
 Int. J. Cancer 75, 908-918 (1998)

 Antitumor and immunotherapeutic effects of activated invasive T lymphoma cells that display short-term interleukin 1α expression
 Cancer Res. 59, 1029-35 (1999)

 In vivo manipulation of IL-2 expression by retroviral tetracycline (tet)-regulated system
 Human Gene Therapy 6, 139-146 (1999)
Opposing effects of IL-1α and IL-1β on malignancy patterns; Tumor cell-associated IL-1α potentiates anti-tumor immune responses and tumor regression whereas IL-1β potentiates invasiveness

12. Mullerad J, Voronov E, Cohen S and Apte RN
Intracellular activation of macrophages by delivering Interleukin-1 via microspheres
Cytokine 12, N11, 1683-1690 (2000)

13. Hacham M, Argov S, White RM, Segal S and Apte RN
Distinct patterns of IL-1α and IL-1β organ distribution-a possible basis for organ mechanisms of innate immunity

14. Zöller M and Matzku S
Vaccination: a future modality of cancer therapy

Inhibition of tumor growth by the continuous delivery of IL-1 receptor antagonist (IL-1Ra) from microencapsulated genetically engineered cells
J. Control Rel. 72, 228-229 (2001)

16. Banat A, Christ O, Cochlovius B, Pralle HB and Zöller M
Tumor-induced suppression of immune response and its correction

17. Matzku S and Zöller M
Specific immunotherapy of cancer in elderly patients
Drugs & Aging 18, 639-664 (2001)

18. Zöller M and Christ O
Prophylactic Tumor Vaccination: Comparison of effector mechanisms initiated by protein versus DNA vaccination

19. Christ O, Seiter S, Matzku S, Burger C and Zöller M
Efficacy of local versus systemic application of antibody-cytokine fusion proteins in tumor therapy

20. Christ O, Matzku S, Burger C and Zöller M
Interleukin-2-antibody and tumor necrosis factor-antibody fusion proteins induce different antitumor immune responses in vivo

21. Weth R, Christ O, Stevanovic S and Zöller M
Gene delivery by attenuated Salmonella typhimurin: Comparing the efficacy of the helper versus cytotoxic T cell priming in tumor vaccination
Cancer Gene Therapy 8, 559-611 (2001)

22. Apte RN and Voronov E
IL-1 – a major cytokine in tumor-host interactions

Differential patterns of IL-1α and IL-1β organ expression under steady-state conditions in young and old mice

24. Zöller M
Tolerance induction by tumor vaccination
J. Immunother. 25, 162-175 (2002)

25. Voronov E, Shouval D, Krelin Y, Cagnano E, Benhharoch D, Iwakura Y, Dinarello CA and Apte RN
IL-1 is required for tumor invasiveness and angiogenesis

26. Bar D, Apte RN, Voronov E, Dinarello CA and Cohen S
A continuous delivery system of IL-1 receptor antagonist reduces angiogenesis and inhibits tumor development

27. Song X, Voronov E, Dvorkin T, Fima E, Cagnano E, Benhharoch D, Shindler Y, Bjorkdahl O, Segal S, Dinarello CA and Apte RN
Differential effects of IL-1α and IL-1β on tumorigenicity patterns and invasiveness

28. Mullerad J, Cohen S, Benhharoch D and Apte RN
Local delivery of IL-1α polymeric microspheres for immunotherapy of an experimental fibrosarcoma
Cancer Invest. 21, 720-728 (2003)

The precursor form of IL-1α is an intracrine proinflammatory activator of transcription

30. Hacham M, Argov S, White RM, Segal S and Apte RN
IL-6 and IL-10 are similarly expressed in organs of normal young and old mice

Ca 67 G. Berke, Weizmann Institute of Science, Rehovot
P. Krammer, DKFZ, Heidelberg

Interaction of cytotoxic T lymphocytes and guinea pig ventricular myocytes: Pharmacological modulation by blocking K+ currents in the CTL
Circulation Res. 78, 253-261 (1996)

Lymphocyte apoptosis induced by CD95(APO-1/Fas) ligand-expressing tumor cells - a mechanism of immune evasion?

3. Felzen B, Berke G, Garnder P and Binah O
Involvement of the IP3 cascade in the damage to guinea pig ventricular myocytes induced by cytotoxic T lymphocytes

4. Binah O, Liu CC, Young JD and Berke G
Channel formation and [Ca2+] accumulation induced by perforin N-terminus peptides: comparison with purified perforin and whole lytic granules

5. Scaffidi C, Medema JP, Krammer P and Peter ME
FLICE is predominantly expressed as two functionally active isoforms, caspase-8/a and caspase 8/b
J. Biol. Chemistry 272, 26953-26958 (1997)

Cleavage of FLICE (caspase-8) by granzyme B during cytotoxic T-lymphocyte apoptosis
7. **Krammer P**
The tumor strikes back: New data on expression of the CD95(APO-1/Fas) receptor/ligand system may cause paradigm changes in our view on drug treatment and tumor immunology

8. **Medema JP, Scaffidi C, Kischkel FC, Shevchenko A, Mann M, Krammer P and Peter ME**
FLICE is activated by association with the CD95 death-inducing signaling complex (DISC)
EMBO J. 10, 2794-2804 (1997)

9.* **Li JH, Rosen D, Ronen D, Behrens CK, Krammer P, Clark WR and Berke G**
The regulation of CD95 ligand expression and function in CTL

Fas (CD95/Apo1)-mediated damage to ventricular monocytes induced by Cytotoxic T lymphocytes from perforin deficient mice: a major role for inositol 1,4,5tri-phosphate

11. **Li JH, Rosen D, Ronen D, Behrens CK, Peter H, Krammer P, Clark WR and Berke G**
The regulation of CD95 ligand expression and function in CTL

Two CD95(APO-1/Fas) signaling pathways
EMBO J. 17, 1675-1687 (1998)

13. **Rosen D, Li JH, Keidar S, Markon I, Orda R and Berke G**
Tumor immunity in perforin-deficient mice: a role for CD95 (Fas/APO-1)

1. **Popovic D, El-Shami KM, Vadai E, Feldman M, Tzehoval E and Eisenbach L**
Antimetastatic vaccination against Lewis lung carcinoma with autologous tumor cells modified to express murine interleukin 12

2. **Tucek-Kerkmann A, Banat A, Cochlovius B and Zöller M**
Antigen loss variants of a murine renal cell carcinoma: Implications for tumor vaccination

MHC class I-restricted epitope spreading in the context of tumor rejection following vaccination with a single immunodominant CTL epitope

Immunogenicity of H-2Kb-low affinity, high affinity, and covalently-bound peptides in anti-tumor vaccination
5. El-Shami KM, Tzehoval E, Vadai E, Feldman M and Eisenbach L
Induction of antitumor immunity with modified autologous cells expressing membrane-bound murine cytokines
J. Interferon Cytokine Res. 19, 1391-1401 (1999)

6. Zöller M and Matzku S
Cancer therapy: New concepts on active immunization
Immunobiol. 201, 1-21 (1999)

7. Cochlovius B, Perschl A, Figdor C and Zöller M
Human melanoma therapy in the SCID mouse: Targeting and activation of melanoma-specific cytotoxic T cells by bispecific antibody fragments is curative
Int. J. Cancer 81, 486-493 (1999)

8. Zöller M and Matzku S
Immunotherapie bei gastrointestinalen Tumoren

Recombinant Gp100 protein presented by dendritic cells elicits a T helper cell response in vitro and in vivo
Int. J. Cancer 83, 547-554 (1999)

10. Tirosh B, Fridkin M, Tzehoval E, Lemonnier FA and Eisenbach L
Antigenicity and immunogenicity of an intracellular delivery system of major histocompatibility complex class I epitopes that bypasses proteasome processing

Induction of antitumor immunity by proteasome-inhibited syngeneic fibroblasts pulsed with a modified TAA peptide

Novel breast-tumor-associated MUC1-derived peptides: characterization in Db/-/- x β2 microglobulin (β2m) null mice transgenic for a chimeric HLA-A21/Db-β2 microglobulin single chain

IFNγ secretion following stimulation with total tumor peptides from autologous human tumors

Anti-tumor vaccination in heterozygous congenic F1 mice: presentation of tumor-associated antigen by the two parental class I alleles

15. Eisenbach L, Bar-Haim E and Al-Shami K
Antitumor vaccination using peptide based vaccines

Induction of protective immunity against syngeneic rat cancer cells by expression of the cytosine deaminase suicide gene
In vitro and in vivo induction of a T cell response toward peptides of the melanoma-associated glycoprotein 100 protein selected by the TEPITOPE program
Surrogate markers of antitumor responses: in vitro activation of T cells by autologous tumor peptides
T-helper cell-response to MHC class II-binding peptides of the renal cell carcinoma-associated antigen RAGE-1
Immunobiol. 203, 743-755 (2001)

Ca 69 I. Witz, Tel Aviv University, Tel Aviv
V. Schirrmacher, DKFZ, Heidelberg

1. Witz I, Sagi-Assif O and Ran M
The shaping of the malignancy phenotype – An interplay between cellular characteristics and microenvironmental factors In: Premalignancy and Tumor Dormancy E Yefenof and RH Scheuermann, Eds Medical Intelligence Unit, RG Landes Co. pp. 147-1566 (1996)
2. Witz I
The shaping of a malignancy phenotype by microenvironmental host factors In: Recent Advances in Gastroenterological Carcinogenesis IF Tahara, K Sugimachi and T Oohara, Eds, Monduzzi Editore Bologny, pp. 287-294 (1996)
TNFα and anti Fas antibodies regulate Ly-6E1
The expression of Ly-6, a marker for highly malignant murine tumor cells, is regulated by growth conditions and stress

Ca 70 Y. Ben-Neriah, Hebrew Univ. - Hadassah Med. School, Jerusalem
W. Dröge, DKFZ, Heidelberg

1. Avraham A, Jung S, Samuels Y, Seger R, and Ben-Neriah Y
Costimulation-dependent activation of a JNK-kinase in T lymphocytes
Sesquiterpene lactones specifically inhibit activation of NF-κB by preventing the degradation of NF-κB α and I-κB-β
3. Umansky V, Hehner SP, Dumont A, Hofmann TG, Schirrmacher V, Dröge W and Schmitz ML
Co-stimulatory effect of nitric oxide on endothelial NF-κB implies a physiological self-amplifying mechanism

4. Hehner SP, Hofmann TG, Ratter F, Dumont A, Dröge W and Schmitz ML
Tumor necrosis factor-α-induced cell killing and activation of transcription factor NF-κB are uncoupled in L929 cells

Cross-talk between steroids and NF-κB: what language?

6. Schmitz ML, Hehner SP, Bacher S, Dröge W and Heinrich M
Transkriptionsfaktor NF-κB: Seine Aktivierungswege als Target für antiinflammatorische Substanzen

7. Hofmann TG, Hehner SP, Bacher S, Dröge W and Schmitz ML
Various glucocorticoids differ in their ability to induce gene expression, apoptosis and to repress NF-κB-dependent transcription
FEBS Lett. 441, 441-446 (1998)

8. Dumont A, Hehner SP, Hofmann TG, Ueffing M, Dröge W and Schmitz ML
Hydrogen peroxide-induced apoptosis is CD95-independent, requires the release of mitochondria-derived reactive oxygen species and the activation of NF-κB
Oncogene 18, 747-759 (1999)

Repression of NF-κB impairs HeLa cell growth by functional interference with cell cycle checkpoint regulators
Oncogene 18, 3113-3225 (1999)

10. Hehner SP, Hofmann TG, Dröge W, and Schmitz ML
The anti-inflammatory sesquiterpene lactone pathenolide inhibits NF-κB by targeting the IκB kinase complex

11. Kaltschmidt B, Kaltschmidt C, Hofmann TG, Hehner SP, Dröge W and Schmitz ML
The pro- or anti-apoptotic function of NF-κB is determined by the nature of the apoptotic stimulus

Ca 71

Z. Fishelson, Tel Aviv University, Tel Aviv
M. Kirschfink, University of Heidelberg

1.* Jurianz K, Maslak S, Garcia-Schüler H, Fishelson Z and Kirschfink M
Neutralization of complement regulatory proteins augments lysis of mammary carcinoma cells targeted with rhumAb anti-HER2
Immunopharmacol. 42, 209-218 (1999)

Complement resistance of tumor cells: Basal and induced mechanisms

3. Paas Y, Bohana-Kashtan O and Fishelson Z
Phosphorylation of the complement component C9 by an ecto-protein kinase of human leukemic cells
Immunopharmacology 42, 175-185 (1999)

4. **Kraus S and Fishelson Z**
Cell desensitization by sublytic C5b-9 complexes and calcium ionophores depends on activation of protein kinase C

5.* Jurianz K, Ziegler S, Donin N, Reiter Y, Fishelson Z and Kirschfink M
K562 erythroleukemic cells are equipped with multiple mechanisms of resistance to lysis by complement
Int. J. Cancer 93, 848-854 (2001)

6. **Kraus S, Seger R and Fishelson Z**
Involvement of the ERK mitogen-activated protein kinase in cell resistance to complement-mediated lysis

7. **Fishelson Z, Hochman I, Greene LE and Eisenberg E**
Contribution of heat shock proteins to cell protection from complement-mediated lysis
Int. Immunol. 8, 983-991 (2001)

8.* Donin N, Jurianz K, Ziporen L, Schultz S, Kirschfink M and Fishelson Z
Complement resistance of human carcinoma cells depends on membrane regulatory proteins, protein kinases and sialic acid

9.* Fishelson Z, Donin N, Sell S, Schultz S and Kirschfink M
Obstacles to cancer immunotherapy: expression of membrane complement regulatory proteins (mCRPs) in tumors

10.* Kirschfink M and Fishelson Z
Complement resistance in cancer, In: The complement system: Novel roles in health and disease

Ca 72 Y. Shaul, The Weizmann Institute of Science, Rehovot
CH. Schröder, DKFZ, Heidelberg

P53 binds and represses the HBV enhancer: an adjacent enhancer element can reverse the transcription effect of p53
EMBO J. 17, 544-553 (1998)

2. Haviv I, Matza Y and Shaul Y
PX, the HBV encoded coactivator, suppresses the phenotypes of TBP and TAFII250 mutants
Genes and Dev. 12, 1217-1226 (1998)

3. Doitch G and Shaul Y
Repression of the hepatitis B virus transcription, in response to genotoxic stress, is p53 dependent and abrogated by pX
Oncogene 18, 7506-7513 (1999)

4. Su Q, Schröder CH, Otto G and Bannasch P
Overexpression of p53 is not directly related to hepatitis B x protein expression and is associated with neoplastic progression in hepatocellular carcinoma rather than hepatic preneoplasia
Ca 73 L. Sherman, Sackler Med. School, Tel Aviv University, Tel Aviv
M. Dürst, University of Jena

Inhibition of serum and calcium induced differentiation of human keratinocytes by HPV16 E6 oncoprotein role of p53 inactivation

HPV16 E6 oncoprotein inhibits apoptosis induced during serum-calcium differentiation of foreskin human keratinocytes

Inhibition of serum- and calcium-induced terminal differentiation of human keratinocytes by HPV 16E6: Study of the association with p53 degradation, inhibition of p53 transactivation, and binding to E6BP

Ca 75 Y. Groner, The Weizmann Institute of Science, Rehovot
M. Schwab, DKFZ, Heidelberg

1. Levanon D, Eisenstein M and Groner Y
Site directed mutagenesis supports a three dimensional model of the runt domain

2. Levanon D, Goldstein RE, Bernstein Y, Tang H, Goldenberg D, Stifani S, Paraoush Z and Groner Y
Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Gro co-processors

Expression of AML1-d, a short isoform of human AML1, in embryonic stem (ES) cells suppresses in vivo tumorigenicity and differentiation

4. Praml C, Savelyeva L, Perri P and Schwab M
Cloning of the human Aflatoxin B1-Aldehyde Reductase gene at 1p35-36 in a region frequently altered in human tumor cells
Cancer Research 58, 5014-5018 (1998)

5. Perri P, Praml C, Savelyeva L, Pillmann A and Schwab M
Fine mapping of distal 1p loci reveals TP73 at D1S468
Cell Genet. 84, 111-114 (1999)

Transcription coupled-translation control of AML1/RUNX1 is mediated by Cap- and IRES-dependent mechanisms

The interaction between cytotrophoblasts and their derived tumor cells

The use of computerized image analysis of tissue specimens and cell cultures in the early identification and the understanding of the pathogenesis of malignant tumors

Morphologic characteristics of the interaction between normal cytotrophoblasts and their malignant counterpart in the development of trophoblastic neoplasia

Developmentally imprinted genes as markers for bladder tumor progression
J. Urology 155, 2120-2133 (1996)

The product of the imprinted H19 gene is an oncofetal RNA

The expression of the imprinted genes H19 and IGF-2 in choriocarcinoma cell lines Is H19 a tumor suppressor gene?
Oncogene 15, 169-177 (1997)

7. *Tzancheva M and Komitowski D*

Latent chromosomal instability in cancer patients

8. *Ariel I, Miao HQ, Ji XR, Schneider T, Roll D, de Groot N, Hochberg A and Ayesh S*

Imprinted H19 oncofetal RNA is a candidate tumor marker for hepatocellular carcinoma

The effect of retinoic acid on the activation of the human H19 promoter by a 3’ downstream region

10. *Elkim M, Ayesh S, Schneider T, de Groot N, Hochberg A and Ariel I*

The dynamics of the imprinted H19 gene expression in the mouse model of bladder carcinoma induced by N-butyl-N-(4-hydroxybutyl)nitrosamine
Carcinogenesis 19, 2095-2099 (1998)

11. *Komitowski D and Tzancheva M*

Latent chromosomal instability in cancer patients

12. *Ariel I, de Groot N and Hochberg A*

The imprinted H19 gene expression in embryogenesis and human cancer
Non-coding mRNA-like RNAs database Y2K
Nucleic Acid Res. 28, 197-200 (2000)

The imprinted H19 gene is a marker of early recurrence in human bladder carcinoma

Use of transcriptional regulatory sequences of telomerase (hTER and hTERT) for selected killing of cancer cells
Mol. Therapy 2, 539-544 (2000)

Characterization of human and mouse H19 regulatory sequences

17. Erdmann V, Barciszewska MZ, Szymanski M, Hochberg A, de Groot N and Barciszewski J
The non-coding RNAs as riboregulators
Nucleic Acid Research 29, 189-193 (2001)

The non-coding RNAs as riboregulators
Cell. and Mol. Life Sciences 58, 960-977 (2001)

Nitric oxide synthase immunoreactivity in human bladder cancer

Analysis of differentially expressed genes in hepatocellular carcinoma, using cDNA arrays

The use of H19 regulatory sequences for targeted therapy in cancer

22. Ayesh S, Matouk I, Schneider T, Ohana P, Lester M, Al-Sharef W, de Groot N and Hochberg A
The possible physiological role of H19 RNA

23. Schachter PP, Ayesh S, Schneider T, Lester M, Czerniak A and Hochberg A
Expression of kinase genes in primary hyperparathyroidsm: Adenoma versus hyperplastic parathyroid tissue

Inhibition of tumor growth by DT-A expressed under the control of IGF2 P3 and P4 promoter sequences
1. Wirkner U, Voss H, Ansorge W and Pyerin W
Genomic organization and promoter identification of the human protein kinase CK2 catalytic subunit α (CSNK2A1)
Genomics 48, 71-78 (1998)

Use of PCR to screen for promoter elements in genomic Dann library clones

Two hybrid screening to search for interaction partners of protein kinase CK2 subunit

4. Grein S and Pyerin W
BTF3 is a potential new substrate of protein kinase CK2

5. Ackermann K and Pyerin W
Protein kinase CK2 α may affect gene expression but unlikely as a transcription factor

Serum-stimulated cell cycle entry of fibroblasts requires undisturbed phosphorylation and non-phosphorylation interactions of the catalytic subunits of protein kinase CK2

Heterogeneous nuclear ribonucleoprotein A2 interacts with protein kinase CK2

8. Li M, Strand D, Krehan A, Pyerin W, Heid HW, Neumann B and Mechler BM
Protein kinase CK2 binds and phosphorylates the nucleosome assembly protein-1 (NAP1) in Drosophila melanogaster

9.* Kaznov D, Stern B, Pick M, Deutsch VR, Brazowski E, Shapira I, Fabian I, Pyerin W and Arber N
Down regulation of bak expression in normal enterocytes by anti-sense construct results in malignant transformation
Gastroentrol. 118, A442 (2000)

Transcription factors Ets1, NfκB, and SP1 are major determinants of the promoter activity of human protein kinase CK2 α gene
J. Biol. Chem. 275, 18327-18336 (2000)

CENP-C: an oncogene or tumor suppressor gene? A possible new tumor marker
Gastroenterol. 122, A299 (2001)

Ets1 is a common element in directing transcription of the α and β genes of human protein kinase CK2

Genes targeted by protein kinase CK2: A genome-wide expression array analysis in yeast
Oncogene transformation of normal enterocytes by overexpression of cyclin D1

Ca 78 R. Bar-Shavit, Hadassah-Univ. Hospital, Jerusalem
P. Altevogt (V. Schirrmacher), DKFZ, Heidelberg

Thrombin receptor overexpression in malignant and physiological invasion processes

2. Kadmon G, Montgomery AMP and Altevogt P
L1 makes immunological progress by expanding its relations
Dev. Immunology 6, 205-213 (1998)

Metalloproteinase-mediated release of the ectodomain of L1 adhesion molecule

Integrin and neurocan binding to L1 involves distinct Ig-domains
J. Biol. Chem. 274, 24602-24610 (1999)

Protection of thrombin receptor expression under hypoxia
J. Biol. Chem. 275, 2281-2287 (2000)

Role of src kinases in the ADAM mediated release of L1 adhesion molecule from human tumor cells
J. Biol. Chem. 275, 1490-15497 (2000)

Characterization of the L1-neurocan binding site: Implications for L1-L1 homophilic binding

Tumor cell invasion is promoted by activation of protease activated receptor-1 in cooperation with the αvβ5 integrin

Ectodomain shedding of L1 adhesion molecule promotes cell migration by autocrine binding to integrins

Signalling pathways induced by protease-activated receptors and integrins in T cells
Immunology 105, 35-46 (2002)

Human α-defensin regulates smooth muscle cell contraction: a role for low-density lipoprotein receptor-related protein/α 2-macroglobulin receptor
Gonadotropin stimulation of MLS human epithelial ovarian carcinoma cells augments cell
adhesion mediated by CD44 and by $\alpha(v)$-integrin
Gynecol. Oncol. 84, 296-302 (2002)

Ca 79 A. Ben-Ze’ev, B. Geiger, The Weizmann Institute of
Science, Rehovot
W. Franke, DKFZ, Heidelberg

Ze’ev A
Regulation of β-catenin levels and localization by overexpression of plakoglobin and
inhibition of the ubiquitin-proteasome system

Plakophilins 1a and 1b: widespread nuclear proteins recruited in specific epithelial cells as
desmosomal plaque components

3. Simcha I, Shtutman M, Salomon D, Zhurinsky J, Sadot E, Geiger B and Ben-
Ze’ev A
Differential nuclear translocation and transactivation potential of β-catenin and plakoglobin

4. Sadot E, Simcha I, Shtutman M, Ben-Ze’ev A and Geiger B
Inhibition of β-catenin-mediated transactivation by cadherin derivatives

5. Ben-Ze’ev A and Geiger B
Differential molecular interactions of β-catenin and plakoglobin in adhesion, signaling and
cancer

6. Ben-Ze’ev A
Cytoskeletal plaque proteins: their role in the regulation of tumorigenesis
In: G Proteins, Cytoskeleton and Cancer (H Maruta and K Kohama, eds.) pp. 101-109
(1998) RG Landes Press, Austin, TX

W
Compositionally different desmosomes in the various compartments of the human hair
follicle
Differentiation 63, 295-304 (1998)

8. Dalamas A, Ben-Ze’ev A, Simcha I, Martinez Leal JF, Zhurinsky J, Shtutman M,
Geiger B and Oren M
Excess β-catenin promotes accumulation of transcriptionally active p53
EMBO J. 18, 3054-3063 (1999)

9. Shtutman M, Zhurinsky J, Simcha I, Albanese C, D’Amico M, Pestell R, and Ben-
Ze’ev A
The cyclin D1 gene is a target of the β-catenin/LEF-1 pathway

10. Lyubimova A, Bershadsky A and Ben-Ze’ev A
The autoregulation of actin synthesis requires the 3’-UTR of actin mRNA and protects cells
from actin overproduction
1. Muyrers-Chen I and Paro R
Epigenetics: unforeseen regulators in cancer

2.* Muyrers-Chen I, Rozovskaia T, Lee N, Nakamura R, Kersey J, Canaani E and Paro R
Expression of leukemic MLL fusion proteins in Drosophila affects cell cycle control and chromosome morphology
Ca 81 A. Ciechanover, Technion, Haifa
M. Scheffner, University of Cologne

Characterization of sequence elements involved in p53 stability regulation reveals cell type
dependence of p5 degradation
Oncogene 17, 2933-2941 (1998)

2. Orian A, Schwartz AL, Israël A, Whiteside S, Kahana C and Ciechanover A
Structural motifs involved in ubiquitin-mediated processing of the NF-kB precursor p105:
Roles of the glycine-rich region and a downstream ubiquitination domain

Iwai K and Ciechanover A
Identification of the ubiquitin carrier proteins, E2s, involved in signal-induced conjugation
and subsequent degradation of IκBα

Sal G
Activation of p53 by conjugation to the ubiquitin-like protein SUMO-1
EMBO J. 18, 6462-6471 (1999)

5. Reinstein E, Scheffner M, Oren M, Ciechanover A and Schwartz A
Degradation of the E7 human papillomavirus oncoprotein by the ubiquitin-proteasome
system: Targeting via ubiquitination of the N-terminal residue
Oncogene 19, 5944-5950 (2000)

Schwartz AL and Ciechanover A
SCF-β-TrCP ubiquitin ligase-mediated processing of NF-kB p105 requires phosphorylation of
its C-terminus by IκB kinase
EMBO J. 19, 2580-2591 (2000)

Complete switch from Mdm2 to HPV E6-mediated degradation of p53 in cervical cancer cells

8. Cohen S, Orian A, and Ciechanover A
Processing of p105 is inhibited by docking of p50 active subunits to the ankyrin repeat
domain, and inhibition is alleviated by signaling via the carboxyl-terminal
phosphorylation/ubiquitin-ligase binding domain
J. Biol. Chem. 276, 26769-26776 (2001)

Ca 82 I. Friedberg, Tel Aviv University, Tel Aviv
D. Kuebler (V. Kinzel), DKFZ, Heidelberg

1. Friedberg I., Fichtman B, Shahbazian D, Bubilil E and Kuebler D
Inhibition of receptor tyrosine kinase signaling in malignant cells by phospho-activated
growth inhibitor
2. Wind M, Goscenca D, Kübler D and Lehmann WD
Stable isotope phospho-profiling of fibrinogen and fetuin subunits by element mass
spectrometry coupled to capillary liquid chromatography

Ca 83 A. Levitzki, Hebrew University, Jerusalem
F. Roesl, DKFZ, Heidelberg

N, Gazit A, Plowman G, Levitzki R, Tsvieli R and Levitzki A
Inhibitors of epidermal growth factor receptor kinase and of cyclin-dependent kinase 2
activation induce growth arrest, differentiation, and apoptosis of human papilloma virus 16-
immortalized human keratinocytes
Cancer Res. 57, 3741-50 (1997)
2. Ben-Bassat H, Rosenbaum-Mitrani S, Hartzstark Z, Levitzki R, Chaouat M,
Shlomai Z, Klein BY, Kleinberger-Doron N, Gazit A, Tsvieli R and Levitzki A
Tyrphostins that suppress the growth of human papilloma virus 16-immortalized human
keratinocytes
3.* Baars B, Bachmann A, Levitzki A, Roesl F
Tyrphostin AG555 inhibits bovine papillomavirus transcritpion by changing the ratio between
E2 transactivator/repressor function

Ca 84 A. Panet, A. Eldor, Hebrew University, Jerusalem
K-M. Debatin, University of Ulm

Herpes simplex virus type1 latency-associated transcripts suppress viral replication and
reduce immediate-early gene mRNA levels in a neuronal cell line
J. Virol. 72(6), 5067-75 (1998)
2. Alian A, Sela-Donenfeld D, Panet A and Eldor A
Avian Hemangiona Retrovirus induces cell proliferation via envelope (env) gene
3. Alian A, Eldor A, Falk H and Panet A
Viral mediated gene transfer to sprouting blood vessels during angiogenesis

Ca 85 A. Kimchi, Weizmann Institute of Science, Rehovot
M. Schwab, DKFZ, Heidelberg

1.* Wittke I, Madge B, Wiedemeyer R, Kimchi A and Schwab M
DAP-5 is involved in MycN/IFNγ-induced apoptosis in human neuroblastoma cells
2. Henis-Korenblit S, Shani G, Sines T, Marash L, Shohat G and Kimchi A
The caspase-cleaved DAP5 protein supports internal ribosome entry site-mediated
translation of death proteins
Ataxin-2 promotes apoptosis of human neuroblastoma cells
Oncogene 22, 401-411 (2003)

Neuroblastoma-derived sulfhydryl oxidase/quiescine6 family, regulates sensitization to Interferon γ-induced cell death in human neuroblastoma cell

Ca 86
M. Oren, Weizmann Institute of Science, Rehovot
P. Krammer, DKFZ, Heidelberg

ATM-dependent phosphorylation of Mdm2 on serine 395: role in p53 activation by DNA damage
Genes Dev. 15, 1067-1077 (2001)

2. **Damalas A, Kahan S, Shtutman M, Ben-Ze’ev A and Oren M**
Deregulated β-catenin induces p53 through E2F1 and ARF and elicits a p53-dependent senescence-like state
EMBO J. 20, 4912-4922 (2001)

3. **Krueger A, Schmitz I, Baumann S, Krammer PH and Kirchhoff S**
Cellular FLICE inhibitory protein splice variants inhibit different steps of caspase-8 activation at the CD95 death-inducing signaling complex
J. Biol. Chem. 276, 20633-20640 (2001)

4. **Gottlieb TM, Leal JFM, Seger R, Taya Y and Oren M**
Cross-talk between Akt, p53 and Mdm2: possible implications for the regulation of apoptosis
Oncogene 21, 1299-1303 (2002)

5. **Michael D and Oren M**
P53 and Mdm2 families in cancer

6. **Oren M, Damalas A, Gottlieb T, Michael D, Taplick J, Leal JFM, Maya R, Moas M, Seger R, Taya Y and Ben-Ze’ev A**
Regulation of p53: intricate loops and delicate balances
Biochem. Pharmacol. 64, 865-871 (2002)

7. **Blander G, Zalle N, Taplick J, Daniely Y, Gray MD and Oren M**
DNA damage-induced translocation of the Werner helicase is regulated by acetylation

8.* **Zalcenstein A, Stambolsky P, Weisz L, Muller M, Wallach D, Goncharov TM, Krammer PH, Rotter V and Oren M**
Mutant p53 gain of function: repression of CD95 (Fas/APO-1) gene expression by tumor-associated p53 mutants
Oncogene 22, 5667-5676 (2003)

9. **Oren M**
Decision making by p53: life, death and cancer

10. **Oren M**
The p53 saga: the good, the bad and the dead
Lectures Harvey Lect. 97, 57-82 (2003)
Suppression of microphthalmia transcription factor activity by its association with protein kinase C interacting protein 1 in mast cells
J. Biol. Chem. 274, 34272-6 (1999)

c-Jun-dependent CD95-L expression is a rate-limiting step in the induction of apoptosis by alkylating agents

c-Jun and JunB antagonistically control cytokine-regulated mesenchymal-epidermal interaction in skin

4. Eichhorst ST, Muller M, Li-Weber M, Schulze-Bergkamen H, Angel P and Krammer PH
A novel AP-1 element in the CD95 ligand promoter is required for induction of apoptosis in hepatocellular carcinoma cells upon treatment with anticancer drugs

Organotypic cocultures with genetically modified mouse fibroblasts as a tool to dissect molecular mechanisms regulating keratinocyte growth and differentiation

6. Angel P, Szabowski A and Schorpp-Kistner M
Function and regulation of AP-1 subunits in skin physiology and pathology
Oncogene 20, 2413-23 (2001)

7. Levy C, Nechushtan H and Razin E
A new role for the STAT3 inhibitor, PIAS3: A repressor of microphthalmia transcription factor

Cell cycle promoting activity of JunB through cyclin A activation

9. Schorpp-Kistner M, Herrlich P and Angel P
The AP-1 family of transcription factors: Structure, regulation and functional analysis in mice
In: Targets for Cancer Chemotherapy, NB LA Thangue and LR Bandara (Eds)

10. Angel P and Szabowski A
Function of AP-1 target genes in mesenchymal-epithelial cross-talk in skin

The cell-specific cytokine expression and allergen-induced airway inflammation depend on JunB
EMBO J. 21, 6321-9 (2002)

An unexpected function for FosB in activation-induced cell death in T cells
Oncogene 22, 1333-1339 (2003)
13. Angel P
The multi-gene family of transcription factor AP-1

14.* Lee YN, Tuckermann J, Nechushtan H, Schutz G, Razin E and Angel P
C-Fos as a regulator of degranulation and cytokine production in FcepsilonRI-activated mast cells

15. Lee YN, Nechushtan H, Figov N and Razin E
The function of lysyl-tRNA synthetase and Ap4A as signaling regulators if MITF activity in FcepsilonRI-activated mast cells

Early activation and induction of apoptosis in T cells is independent of c-Fos

Ca 88 G. Golomb, Hebrew University, Jerusalem R. Berger, DKFZ, Heidelberg

Sustained delivery and expression of DNA encapsulated in polymeric nanoparticles

Decreased levels of osteopontin and bone sialoprotein II are correlated with reduced proliferation, colony formation, and migration of GFP-MDA-MB231 cells

Delivery and expression of pDNA from collagen matrices

4. Adwan H, Bäuerle T and Berger MR
Down-regulation of osteopontin and bone sialoprotein II is related to reduced colony formation and metastasis formation of MDA-MB-231 human breast cancer cells

Ca 89 E. Keshet, Hebrew University, Jerusalem NE. Fusenig, DKFZ, Heidelberg

Tissue models to study tumor-stroma interactions
Ca 90 I. Vlodavsky, Y. Friedmann, Hadassah Univ. Hospital, Jersualem
V. Schirrmacher, DKFZ, Heidelberg

1. Miao HQ, Elkin M, Aingorn E, Ishai-Michaeli R, Stein CA and Vlodavsky Y
Inhibition of heparanase activity and tumor metastasis by laminarin sulfate and phosphorothioate oligodeoxynucleotides
Halofuginone: a potent inhibitor of critical steps in angiogenesis progression
Poly(n-acryl amino acids) – a new class of biologically active polyanions
J. Medicinal Chem. 43, 2501-2600 (2000)
Heparanase as mediator of angiogenesis: mode of action
FASEB J. 15, 1661-1663 (2001)
Cell surface expression and secretion of heparanase markedly promote tumor angiogenesis and metastasis
Differential effect of synthetic heparin-mimicking compounds on release of bFGF from extracellular matrix, inhibition of SMC cell proliferation and inhibition of heparanase activity

Ca 91 Z. Fishelson, Tel Aviv University, Tel Aviv
M. Kirschfink, University of Heidelberg

1. Kraus S and Fishelson Z
Cell desensitization by sublytic C5b-9 complexes and calcium ionophores depends on activation of protein kinase C
2. Kraus S, Seger R and Fishelson Z
Involvement of the ERK mitogen-activated protein kinase in cell resistance to complement-mediated lysis
3. Fishelson Z, Hochman I, Greene LE and Eisenberg E
Contribution of heat shock proteins to cell protection from complement-mediated lysis
Int. Immunol. 8, 983-991 (2001)
4. Kirschfink M
Targeting complement in therapy
5.* Donin N, Jurianz K, Kirschfink M and Fishelson Z
Complement resistance of human carcinoma cells depends on membrane regulatory proteins, protein kinases and sialic acid

6.* Fishelson Z, Donin N, Zell S, Schultz S and Kirschfink M
Obstacles to cancer immunotherapy: expression of membrane complement regulatory proteins (mCRPs) in tumors

7.* Kirschfink M and Fishelson Z
Tumor cell resistance to complement-mediated lysis