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The success of genome sequencing projects has provided the basis for systematic 
analysis of protein function and has led to a shift from the description of single 
molecules to the characterization of complex samples. Such a task would not be 
possible without the provision of appropriate high-throughput technologies, such as 
protein microarray technology. In addition, the increasing number of samples 
necessitates the adaptation of such technologies to a multiplex format. This review will 
discuss protein microarray technology in the context of multiplex analysis and highlight 
its current prospects and limitations.
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The sequencing of the human genome has
brought about a strong interest in analyzing
the function of DNA-encoded information.
Since a genome can express various proteomes
according to localization, differentiation and
development, a direct elucidation of gene
function and expression rate from the DNA
sequence alone is not possible. Additionally,
proteomes are modified in response to biotic
and abiotic environmental changes and only a
fraction of genes are activated in a specific cell
type at a certain time point.

In striking contrast to the estimated 22,221
genes [1], the complexity of the human pro-
teome is expected to range from 100,000 to
several million protein molecules [2]. This dis-
parity is mainly due to post-transcriptional
control of protein translations [3] and the over
200 possible post-translational modifications
of proteins that exist [4]. All this shows that
protein expression, folding and modification,
rather than merely the genetic layout, deter-
mine the cell’s phenotype. Therefore, the sys-
tematic analysis of proteins and their inter-
action partners by proteomic approaches will
significantly contribute to our understanding
of cell function and the identification of novel
drug targets for therapeutic intervention [5].

Protein microarrays have become an impor-
tant high-throughput tool in this field because
they allow parallel, fast and easy analysis of

thousands of addressable immobilized proteins
for expression, modification and molecular
interaction [6–9]. In several applications, the
analysis of two or more parameters of immo-
bilized proteins by multiplexing approaches is
of increasing importance [10]. To define disease
markers, not only the expression and amount
of a protein may be of specific interest, but also
its modifications; for example, determination
of the phosphorylation state of tau proteins in
cerebrospinal fluids may significantly improve
early and differential diagnosis of Alzheimer’s
disease, in addition to established biologic
markers such as the measurement of total tau
protein concentration [11].

Currently, several multiplexing techniques
have been introduced that allow analysis of
different parameters or different samples in
parallel. This review will discuss protein
microarray technology in the context of multi-
plex analysis and highlight its current prospects
and limitations.

Generation of protein microarrays & 
detection methods
Capture molecules
Protein arrays consist of a large number of regu-
larly arranged discrete spots of capture mole-
cules, which are transferred on a solid support
using spotting robots [6]. Depending on the
application, the following different capture

CONTENTS

Generation of 
protein microarrays & 
detection methods

Abundance-based 
applications & multiplexing

Function-based 
applications & multiplexing

Bead-based systems 
for multiplexing

Conclusions

Expert commentary 
& five-year view

Key issues

References 

Affiliations

For reprint orders, please contact reprints@future-drugs.com

http://www.future-drugs.com


Kersten, Wanker, Hoheisel & Angenendt

500 Expert Rev. Proteomics 2(4), (2005)

molecules are currently used: purified recombinant proteins [12],
antibodies [13], antibody fragments [14], antibody mimics
(e.g., aptamers) [15–17], peptides [18,19] or complex protein
extracts [20]. The diversity of a microarray is thereby mainly
limited by the accessibility of large numbers of capture mole-
cules and the availability of technologies for their generation
and purification. Another important issue is also the function-
ality of the spotted molecules. While antibodies are relatively
stable, membrane proteins, for example, tend to unfold and
lose their functionality upon immobilization and storage of the
arrays. It is therefore advisable to transfer the content to the
chip in a stable format. Ramachandran and coworkers printed
complementary DNAs (cDNAs), which are more stable than
proteins, onto glass slides [21]. Proteins were generated just
prior to the use of the arrays by cell-free transcription and
translation in situ. The results of protein–protein interaction
studies performed with these microarrays indicated that the
synthesized proteins were in a functional form. It can be
expected that additional methodologies applying this concept
will be developed soon.

Surfaces of protein microarrays
One crucial factor in the generation of protein microarrays is
the choice of the surface coating used for immobilization of the
proteins. Such a surface must obey several requirements, which
include the provision of optimal binding conditions and an
environment that promotes functionality of the immobilized
substances. While in previous years, polyvinylidene fluoride
(PVDF) membranes were used for protein macro- [22,23] and
microarrays [24], the demand for even higher densities, as well as
the need for decreased sample consumption and quantification,
led to the application of glass slides as solid supports for micro-
arrays. The surface of the slides is thereby activated to allow
attachment of the proteins in a covalent or noncovalent fashion
with a maximum binding capacity. Surfaces that allow non-
covalent attachment can be positively charged (e.g., poly-L-
lysine and aminosilane), hydrophobic membranes (e.g., nitro-
cellulose), hydrophilic polyacrylamide or agarose gels. Covalent
attachment applies a variety of chemically activated surfaces
(e.g., aldehyde, epoxy and active esters) that are highly reactive
to amino, thiol and hydroxyl groups of proteins.

Beside their mode of attachment, surface chemistries can also
be differentiated according to their structure. Plain (non-gel
coated) microarrays display different functional groups, such as
poly-L-lysine [25,26], aldehyde [12] or epoxy moieties [27], while
3D microarrays have a gel-coated surface, such as polyacryl-
amide [28–30] or agarose [31]. This type of microarray also
includes FASTTM (fluorescence array surface technology slide)
slides from Schleicher & Schuell, which are coated with a nitro-
cellulose-derived polymer [27,29,32–34]. A recent addition to
3D slides are hydrogel slides composed of glycosylated amino
acetate, which combine hydrophilic and hydrophobic groups and
were used to monitor enzymatic activities on the chip [35].
3D microarrays have a higher immobilization capacity and the
homogenous water environment minimizes protein denaturation.

This could have a positive influence on the active state of the
proteins. Besides plain and 3D slide surfaces, there are also slide
coatings that cannot easily be classified in either group, such as
the polymeric coating introduced by Cretic and colleagues [36],
since they neither display a plain functionalized glass surface
nor a 3D gel. Comparisons of the different surface coatings
with regard to their suitability in protein and antibody micro-
array technology have been performed and highlight optimal
coatings for each type of application [7,27,30,37].

All the above-mentioned surfaces lead to a nonorientated
(i.e., random) attachment of immobilized proteins. However,
an investigation into the effects of orientation of antibodies
and Fab antibody fragments, performed by Peluso and col-
leagues [38], points towards an increased binding capacity of
slide surfaces, which promotes oriented immobilization. The
capture moieties that lead to oriented immobilization can be
manifold and include Ni-NTA [39,40], nucleic acids [41], as well
as biotin or streptavidin [42,43]. Nevertheless, this mode of
immobilization either requires an intrinsic affinity tag, or a sepa-
rate attachment step of the tag, which becomes cumbersome for
large collections of proteins.

Spotting robots
Microarrays can be generated in many different ways. Cur-
rently, the technology for the production of protein microarrays
is similar to DNA microarray technology [44]. However, optimi-
zation of the hardware is needed to generate functional protein
arrays because proteins are less stable than DNA. Hence, they
may lose their functional structure by mechanical forces exerted
on the protein during spotting. For long spotting runs of high-
content protein microarrays, the spotting robots have to be
equipped with cooling capacities, which are not required for
the generation of DNA microarrays.

Currently, different types of contact and noncontact arrayers
are in use for the generation of protein microarrays (for an over-
view of commercially available arrayers, see [6,108]). Contact print-
ing arrayers deliver subnanoliter sample volume directly to the
surface using tiny pins with or without capillary slots [9]. These
spotters are very robust and well suited to produce microarrays
containing many different capture molecules. Disadvantages of
contact printers are that they cannot align their pins to prefabri-
cated slide structures, such as nanowells [45], and that they are not
well suited to multiple component reactions, in which carry-over
may be an issue [46]. Furthermore, mechanical forces during spot-
ting may harm protein structure. Noncontact spotters use piezo-
electric elements to transfer the proteins to the slide within nano-
liter to picoliter droplets [9]. Since they do not touch the surface
during spotting, their usage is not restricted by the surface struc-
ture. They enable the exact dosage of the spotted sample volume
and are therefore more suitable for use in quantitative microarray
applications than contact printers. Noncontact printers are not
well suited  for spotting many different capture molecules, since
the spotting quality and robustness is very much dependent on
the substance being spotted. Furthermore, shearing forces during
drop formation may damage some samples [47].
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Incubation & detection on protein microarrays
The methodology of incubation does not significantly differ
between DNA and protein microarray technology. After spot-
ting of the slide with the capture molecules, the remaining sur-
face is blocked using a relatively inert protein and incubated
with the sample. This step can be carried out either manually or
in an automated fashion using hybridization stations, which are
available for DNA and protein microarrays.

Labeling of the samples can be performed in two ways: the
sample may be directly labeled for detection of captured sam-
ple molecules (direct labeling) or the slides may be incubated
with the unlabeled sample followed by incubation with a
labeled detection molecule (e.g., antibodies) that recognizes
the captured sample molecules (indirect labeling). Antibodies
are often used as detection molecules. While direct labeling is
the most straightforward approach, it may alter the proper-
ties of the sample molecules. In contrast, indirect labeling
methods rely on the generic binding properties of the sample
being investigated. The binding properties are not affected,
since incubation with the labeled detection molecule is per-
formed after the binding of the sample to the immobilized
capture molecules.

Labeling of the sample or detection molecules can be by fluo-
rescence, radioactivity or chemiluminescence. The preferred
method is labeling with fluorescence dyes (e.g., cyanine [Cy]3
and Cy5), which is easy to handle and extremely sensitive [13].
Detection of fluorescence labels is performed using a laser scan-
ner with a resolution in the micrometer range. Although radio-
active labeling is one of the most sensitive detection methods, it
is not widely used and is restricted to modification studies, such
as substrate profiling of kinases [33,45]. The main problems are
associated with proper waste disposal and the risks of radio-
active contamination. Furthermore, there are only a few scanner
systems that support a radioactive readout at the high spatial
resolution required in microarray technology. The same limita-
tion is true for the application of chemiluminescence. Although
it has been applied as a readout for microarrays and intrinsically
has several advantages, such as signal amplification capabilities,
it is not widely used in microarray technology [48].

Beside chemiluminescence, other methods of signal ampli-
fication have been developed, such as rolling-circle amplifica-
tion (RCA) [49]. In this case, the detection antibody is tagged
with a DNA primer. The antibody–DNA conjugate binds
specifically to the immobilized interaction partner and a cir-
cular DNA molecule hybridizes to the complementary
primer, which is extended in the presence of DNA polymer-
ase. The resulting RCA product is then detected by hybridiza-
tion with multiple fluorescent, complementary, oligonucleo-
tide probes. The fluorescence, which can be measured at each
spot, is thus directly proportional to the protein concentra-
tion in the original sample on the microarray. This method
has high sensitivity, a wide dynamic range and excellent spot-
to-spot reproducibility. It has been applied for the detection
of low-abundance proteins, such as immunoglobulin (Ig)E
antibodies in sera [50].

Since labeling of molecules can affect their functionality,
label-free detection schemes are favorable. Several such detec-
tion schemes have been utilized for microarray technology,
such as real-time detection by surface plasmon resonance
(SPR) [51], intrinsic time-resolved ultraviolet fluorescence [52],
mass spectrometry [53], ellipsometry [54] and Kelvin nanoprobe
detection [55]. Although advances with regard to throughput
have been achieved for SPR and mass spectrometry [51,53,56],
transfering these technologies to high-throughput applications
remains difficult. Furthermore, these label-free detection
methods such as mass spectrometry are orders of magnitudes
less sensitive than, for example, fluorescence-based detection in
a sandwich assay [57].

Abundance-based applications & multiplexing
Different abundance-based applications
Abundance-based microarrays are one type of protein micro-
array, in terms of application, according to a recent classifica-
tion by LaBaer and Ramachandran [8]. These microarrays are
mainly used for the translational profiling of crude protein
samples in a semiquantitative or quantitative manner [13,58,59].
Their application in several studies revealed differences in pro-
tein composition between healthy and disease states leading to
the identification of new disease markers [13,20,58,60–62]. Further-
more, abundance-based microarrays have been successfully
applied to profile phosphorylation states of signaling proteins
in signal transduction studies [58,63].

Two types of abundance-based microarrays have been
described: capture microarrays (FIGURES 1A & 1B) and reverse-
phase protein blots (FIGURE 1C) [8]. Capture arrays contain immo-
bilized capture molecules (e.g., antibodies, antibody mimics and
antigens) on the surface. They are probed with a complex pro-
tein sample (protein extract) to profile specific proteins [64]. The
detection of captured proteins can be performed by direct labe-
ling of the protein extract (FIGURE 1A) or by a subsequent incuba-
tion step with a labeled detection antibody that recognizes the
captured proteins on the microarray (FIGURE 1B; sandwich
immunoassay, reviewed in [65]). The second type of abundance-
based microarrays, reverse-phase protein blots, are generated by
spotting the complex protein samples themselves, which are
then probed with labeled antibodies to profile specific proteins
in these samples (FIGURE 1C) [8].

Advantages and disadvantages of all these types of abun-
dance-based microarrays as well as their different applications
have recently been described in detail [8].

Multiplexing in abundance-based applications
Multiplexing in abundance-based applications for the analysis of
several samples or several parameters on the same chip is becom-
ing increasingly important. This is due to increased sample
numbers as well as the need for low sample consumption.

There are currently two main principles to perform multi-
plexing in abundance-based applications: the analysis of several
samples on the same array by applying them to different com-
partments of the array (compartmentation strategy); and the
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incubation of the array with a mixture of different samples or of
different detection molecules, respectively, which are labeled
before application with fluorescent dyes of different colors
(labeling strategy) (FIGURE 1A–C).

Compartmentation strategy

The first approaches for the development of compartmentation
methodologies were described in 1999 by Mendoza and col-
leagues [66]. In their work, they applied biochips, which consisted
of a flat glass plate with 96 wells formed by a hydrophobic Teflon
mask. Each of the 96 wells contained four identical 36-element
arrays (144 elements per well) comprising eight different anti-
gens and a marker protein. By using a detection scheme that was
based on the formation of a fluorescent precipitate, they could
demonstrate the multiplexing capabilities through the analysis of
several antigen–antibody interactions [66].

A similar approach was performed by Tam and colleagues for
the detection of eight different cytokines involved in the change
of T-cells from a naive phenotype to a T-helper (Th)1/Th2
phenotype [67] and by Nielsen and coworkers to quantify the
amounts and modification states of ErbB receptors in crude cell

lysates [58]. In the latter work, arrays of antibodies were printed
on glass slides and a bottomless 96-well plate was then attached
on top of the slide to apply different samples. Schweitzer and
coworkers produced a 51-feature cytokine array and applied
RCA to measure secretion of proteins from human dendritic cells
induced by lipopolysaccharide or tumor necrosis factor-α [49].
Shao and colleagues extended this application to detect a total
of 150 cytokines simultaneously in a sandwich immunoassay
format [59]. Many proteins could be detected with a sensitivity
in the pg/ml range. All the studies described above used the
compartmentation strategy on capture microarrays for detection
and quantification of proteins from extracts.

Commercially available tools for the multiplex analysis of dif-
ferent samples by the compartmentation strategy are incuba-
tion chambers distributed by several companies such as What-
man Schleicher & Schuell [101] or Grace Biolabs [102]. Masks
can be attached to the slides and allow the generation of incu-
bation chambers with two to 16 wells (Whatman Schleicher &
Schuell) or 16 wells (Grace Biolabs) on top of the slide. In prin-
ciple, this technique can be used for all types of abundance- and
function-based applications.

Figure 1. Multiplexing using the labeling strategy in different abundance-based microarray set-ups. (A) Capture arrays with direct labeling, (B) capture 
arrays with sandwich immunoassay and (C) reverse-phase protein blots. This classification is taken from LaBaer and Ramachandran [8]. 
Ab: Antibody.
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Labeling strategy

FIGURE 1 provides an overview of the application of the second cur-
rent multiplexing strategy, the labeling strategy (reviewed in [69]),
for different types of abundance-based microarrays. Dual fluo-
rescent-labeling strategies of complex mixtures on capture
arrays are increasingly used to compare protein expression of
two different cell states analogous to mRNA profiling on DNA
microarrays (FIGURE 1A). Skreekumar and coworkers monitored
alterations of protein levels in LoVo colon carcinoma cells after
ionizing radiation using antibody arrays with 146 distinct anti-
bodies [70]. They probed the arrays with protein extracts
obtained from cell cultures prior as well as after irradiation and
were able to detect the up- and downregulation of distinct pro-
teins caused by irradiation. Miller and coworkers also used the
direct Cy3/Cy5 labeling strategy on antibody arrays to perform
differential profiling of prostate cancer biomarkers in serum
samples [71]. The authors identified five proteins (von Wille-
brand Factor, IgM, α1-antichymotrypsin, Villin and IgG) that
had significantly different levels between the prostate cancer
samples and the controls.

Dual labeling strategies have also been applied in sandwich
immunoassays on capture arrays (FIGURE 1B). For example, in the
study by Nielsen and coworkers, the amount and phosphoryla-
tion state of ErbB receptors in crude cell lysates were quantified
in parallel in order to monitor receptor activation [58]. The
receptors were captured on the microarrays using pan-specific
capture antibodies (antibodies that bind to the receptor outside
of the phosphorylation site) (FIGURE 1B). The arrays were then
probed with a mixture of two detection antibodies, a Cy3-
labeled phosphospecific antibody to measure the phosphoryla-
tion state and a Cy5-labeled, receptor-specific antibody to
determine the amount of the protein retained on the chip by
the capture antibody. The ratio of Cy3 to Cy5 fluorescence
allowed quantification of the fraction of receptor molecules
that were phosphorylated.

Multiplexing within the individual spot using distinct labels
may also be performed in reverse-phase array applications as
demonstrated schematically in FIGURE 1C. Chan and coworkers
studied the kinetics of mitogen-activated protein kinase
(MAPK) phosphorylation during the activation of Jurkat
T-cells using this strategy [63]. Lysates generated from the cells
over a 30-min time course after activation were used to fabri-
cate the reverse-phase microarrays. The arrays were incubated
with a mixture of Cy3-labeled phospho-MAPK antibodies and
Cy5-labeled actin antibodies. Increasing intensity of Cy3 fluo-
rescence after cell activation indicated an increasing level of
MAPK phosphorylation. The Cy3 intensity was normalized to
Cy5 fluorescence, which corresponded to the level of actin in
the different samples. 

Multiplexing using distinct labels has special demands on
bioinformatic data evaluation. The color intensity for every
color is affected by different labeling quality of the samples and
differences in the detection efficiency for the fluorescent labels,
which is, for example, influenced by the band width of the light
filters and the ratio between photomultiplier gains selected for

each wavelength during scanning. Furthermore, differences in
the quantity of proteins in the different labeled samples are
important. Therefore, the following issues need to be addressed
when analyzing data: normalization of the different color
intensities; and background subtraction of each color. For
evaluation of antibody array data, strategies similar to the anal-
ysis of DNA microarray data may be applied [72]. Normaliza-
tion may be performed via total intensity as in the antibody
array study by Sreekumar and coworkers [70]. After background
correction, the authors scaled the data such that the average
value for all of the spots from each array was normalized to one
in both the Cy3 and Cy5 channel. This kind of normalization
relies on the assumption that the average spot intensity would
represent unchanged protein expression. In their search for
potential biomarkers in cancer patient sera, Miller and coworkers
used a normalization factor that had been calculated based on
both the signal intensity from control spots containing anti-
IgG antibody and the serum IgG concentration measured by
enzyme-linked immunosorbent assay (ELISA) [71].

Function-based applications & multiplexing
Different function-based applications
Function-based protein microarrays are another microarray
type in terms of application [8]. These microarrays, in contrast
to abundance-based arrays, aim at the qualitative investigation
of protein interactions and modifications, and can be used to
generate protein interaction maps [73]. They are created by
immobilizing large numbers of purified, recombinant, prefera-
bly native proteins from a given cell, meristem or organism on
a solid surface. These arrays can then be used to screen the
interaction of the immobilized proteins with antibodies, pro-
teins, DNA or small molecules [6–9]. Furthermore, they can be
utilized to study the modification of the proteins by enzymes
in a qualitative manner. The use of functional protein micro-
arrays for the identification of protein–protein interactions has
been demonstrated in several studies [21,39,73]. Furthermore,
whole-proteome microarrays were applied to test the specificity
and crossreactivity of antibodies [74]. Using protein micro-
arrays, initial studies for the detection of protein–DNA inter-
actions have been performed [26,34] and can be applied in future
to identify and characterize nucleic acid-binding proteins, such
as transcription factors. Another possibility is to detect the
interaction of proteins with small molecules/ligands using pro-
tein microarrays [12,75]. Applications of protein microarrays to
analyze the phosphorylation of proteins by kinases have also
been reported [12,33,45].

Multiplexing in function-based applications
In function-based applications, multiplexing is commonly used
to measure the abundance of capture molecules by one dye and
the abundance of captured sample molecules by another [21,39].
In addition, new technologies based on microwell technology
have been introduced that allow multiplexing in functional
protein assays. Biran and coworkers constructed a high-density,
ordered array containing thousands of microwells on optical
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imaging fibers to monitor cellular responses using reporter
genes or fluorescent indicators [76]. Since each fiber monitors
the signals of one well, they were able to detect in vivo pro-
tein–protein interactions with a resolution of a single cell.
Microwell technology was also used for the cell-free expression
of proteins [77] and the high-throughput analysis of protein
kinases [45]. The technologies described above for multiplexing
in functional applications have the intrinsic disadvantage that
they only allow multiplexing on the site of capture molecules or
require additional machinery or nanowell plates.

Multiple spotting technology

To overcome the limitations mentioned above, the authors have
developed a new technology known as multiple spotting tech-
nology (MIST) [78]. The power of this technology has been
demonstrated in the following different applications: anti-
body–antigen assays (FIGURE 2A), screening of phage display
selections (FIGURE 2B) and several enzymatic assays (FIGURE 2C).

MIST allows multiplexing not only on the level of capture
molecules, but also on the sample level, hence allowing analysis
of different combinations of capture molecules to sample simi-
lar to commonly used microtiter plates. The principle of MIST
is based on the spotting of the sample to the same position, in
which the capture molecules were fixed to the surface (FIGURE 3).
By the prevention of total evaporation of the sample, for exam-
ple, by hygroscopic substances, a reaction entity with a sub-
nanoliter volume is formed, in which the reaction rapidly
progresses due to limited diffusion possibilities. To demonstrate

the flexibility and specificity of MIST, an immunosorbent assay
was performed in which four different concentrations of pro-
tein were subjected to four different concentrations of an anti-
body mixture (FIGURE 2A) [78]. The study revealed the feasibility
of the approach and displayed minimal crossreactivity of the
antibodies (FIGURE 4).

MIST technology consumes only nanoliters of sample and
capture molecules, requires only standard spotting and scan-
ning machinery and enables assays that rely on unbound reac-
tion partners. One example in which the latter key feature is
especially beneficial is the screening of inhibitors for enzymatic
reactions. In a proof-of-principle study, it was demonstrated
that MIST can be applied to conduct enzymatic assays using
alkaline phosphatase, horseradish peroxidase and cathepsin D
(FIGURE 2C) [79]. Furthermore, it was demonstrated that it is pos-
sible to monitor the effects of inhibitors and that extremely sen-
sitive detection of down to 35 enzyme molecules is possible. In
another application, MIST was utilized for the screening of
large pools of recombinant antibodies (FIGURE 2B) [80]. This was
important, since with the advent of automated phage display
selection platforms [81], the bottleneck was shifted further
downstream to the screening of large sets of monoclonal bind-
ers obtained from the selections for affinity and specificity. Uti-
lizing MIST, the authors’ immobilized the antigen used for the
selection, and transferred unpurified recombinant antibody
fragments on top of the antigen. While sensitivities comparable
to the commonly used ELISA were obtained, manual inter-
action steps were minimized and the technique was stream-

lined to be accessible within the auto-
mated selection procedure. The same
approach of spotting the sample on top of
the capture molecules was also applied in a
recent publication of Wingren and
coworkers, who applied unpurified single-
chain Fv antibody fragments for the sensi-
tive detection of analyte in complex pro-
teomes [40]. Although MIST offers several
advantages, it also has intrinsic drawbacks.
These include the extra time required for
spotting and the lack of ability to quantify
proteins within dilute solutions, which
limits its use in abundance-based applica-
tions. For example, measurements of pro-
teins with nanomolar concentrations are
not possible, since only approximately two
molecules of protein are present in the
reaction volume. 

Bead-based systems for multiplexing
Apart from planar microarrays, bead-based
systems provide an excellent alternative for
measuring a low number of samples in a
multiplexed fashion in solution. This tech-
nology uses different color- or size-coded
beads, which serve as solid supports on

Figure 2. Workflow of the MIST. The diagram demonstrates the workflow for three applications of 
MIST: (A) antibody–antigen assay [78]; (B) screening of phage display selections [80]; and (C) enzymatic 
assays [79].
MIST: Multiple spotting technique.
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which different capture molecules are
immobilized. Flow cytometric systems
enable the simultaneous discrimination of
bead types and the quantification of cap-
tured sample molecules with suitable
reporter dyes.

xMAP® technology from Luminex
Corp. allows multiplex analysis of samples
for abundance- and function-based
approaches [103]. The beads used are color
coded by different ratios of two fluores-
cent dyes. During readout, the system
records the fluorescence reporter mole-
cule that monitors a binding event as well
as the color code of the bead for identifica-
tion of the capture molecule. This combi-
nation allows multiplex analysis of up to
100 different species in a liquid environ-
ment without any washing steps [82–84].
Luminex bead-based xMAP technology
has also been used in the Bio-Plex™ sys-
tem from Bio-Rad Laboratories [104], as
well as the LiquiChip™ system from Qia-
gen [105] (for commercially available tech-
niques, see [10]). FACSarray™ from
BD Bioscinenses is another commercially
available bead-based technology, and may
be used in combination with a 72-plex
flexible bead set [106]. Although bead-
based systems have limitations in the achievable degree of
multiplexing, these systems are much further advanced in
automation. Throughput of low-density applications is no
longer an issue. Since no protein spotting is needed, it is easier
to keep immobilized proteins in a functional state using this
technology than by applying microarray technology.

Conclusions
Protein and antibody microarray technologies are becoming pro-
pitious tools for the high-throughput analysis of protein abun-
dances, modifications and interactions. They can be divided into
abundance- and function-based approaches in terms of their
applications. Abundance-based microarrays are aimed at the
description of relative protein abundances and are analogous to
the DNA arrays commonly used in expression profiling projects.
Comparison of different states of biologic samples by multiplex-
ing approaches is increasingly important in order to discover dis-
ease markers and new targets for therapies. Functional applica-
tions, in contrast, are intended to identify potential interaction
partners and modifications of proteins to decipher the complex
cellular network. Since a single protein within this network
interacts with many different interaction partners in a highly
dynamic manner, it is crucial to examine as many interactions as
possible simultaneously. This can be achieved by applying multi-
plex technologies, which are capable of analyzing different pro-
perties of the same protein in a parallel fashion. Although much

effort has been invested in the optimization of such technolo-
gies, they are at an early stage of development. Nevertheless, it
can be expected that further advances will enable the use of such
technologies to obtain a more comprehensive view of biologic
systems in the future.

Expert commentary & five-year view
Protein and antibody microarray technology is a rapidly evolving
field, driven by the urgent need for high-throughput methods to
functionally characterize proteins. While many proof-of-principle
studies have shown potential areas of application, only a few
large-scale investigative studies have been performed. One reason
for this is the lack of availability of large sets of expression clones.
For protein microarrays, this problem becombes even more severe
upon consideration of the numerous post-translational modifica-
tions that are introduced by the different expression hosts and
that are required to obtain a comprehensive view of cellular
organization. Although the first steps have been undertaken to
solve this problem using cell-free transcription and translation
systems of varying origins, further optimization will be required
to adapt such systems to a high-density microarray format.

A central challenge of antibody microarrays in abundance-
based applications will be the assembly and validation of a com-
plete set of antibodies, antibody fragments or antibody mimics
for the human proteome. Although several companies are offer-
ing the first antibody microarrays for different applications,

Figure 3. Principle of MIST. The principle of MIST is based on the spotting of the sample to the same 
position on the microarray in which the capture molecules were fixed to the surface. By the prevention of 
total evaporation of the sample, for example, by hygroscopic substances, a reaction entity with a 
subnanoliter volume is formed, in which the reaction rapidly progresses due to limited diffusion 
possibilities. Beside the two-step spotting of capture molecules and samples, additional spotting steps can 
be performed in other set-ups, such as the subsequent spotting of fluorogenic substrate, inhibitor and 
enzyme in enzymatic screening assays.
MIST: Multiple spotting technique.

1st spotting Blocking

Addition of analyte and
creation of reaction
entities by 2nd spotting

Washing and/or
detection
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their widespread use is currently hindered by their price. Thus,
display technologies that allow the cost-effective generation and
production of antibodies will gain more importance. However,
most of the large-scale-generated recombinant capture mole-
cules exhibit moderate affinities and require a further matura-
tion process to be adequate surrogates for in vivo-generated
antibodies. For that reason, the application of recombinant
binders on large antibody microarrays still requires improve-
ments and rigorous quality assessment with regard to sensitivity
and specificity [74,85], especially when highly complex solutions
are used as samples. Within the next 5 years, it is expected that
current display technologies for the high-throughput produc-
tion of antibodies or antibody mimics will be automated. This
progress will be accompanied by a further improvement of
methods for analyzing the specificity of the generated antibodies
in an effective manner.

Besides this content problem, several technical limitations
such as the preservation of protein functionality after immobili-
zation as well as the provision of the required absolute and rela-
tive sensitivity hinder the development. Another problem that
will be rather difficult to solve is the large dynamic range of
protein abundance, which can be as large as 1012 in human
plasma [86]. This problem can be tackled by reducing sample
complexity prior to microarray analysis. However, fractionation
is a complex task for quantitative applications.

Another aspect of protein microarrays is the type of measure-
ments that will be made. Although several studies show that quan-
titative measurements are possible, it can be expected that the
majority of investigations, especially those with large sets of differ-
ent binders, will be based on qualitative or semiquantitative meas-
urements. This is due to the efforts that coincide with the estab-
lishment and calibration of the chip, and the required low

Figure 4. Example of a multiplex chip generated by MIST. To demonstrate the multiplexing capabilities, four different concentrations of HSA were spotted in 
columns of four from the highest concentration at the right to the lowest concentration at the left. In a second spotting run, an equimolar mixture of mouse 
anti-HSA antibodies and rabbit antifibrinogen antibodies was applied to the very same spotting positions with the highest concentration in the top four rows and 
the lowest concentration in the bottom four rows. Detection was performed by differently labeled species-specific secondary antibodies. (A) Scanning at the 
respective wavelength for bound anti-HSA antibodies (Cy5-labeled antimouse antibody). (B) Scanning at the respective wavelength for bound antifibrinogen 
antibodies (Cy3-labeled antirabbit antibody). HSA and antibody concentrations are indicated on the y- and x-axes of the diagrams, respectively, and the signal 
intensities obtained are shown on the z-axis. Signal intensities are illustrated in the same spatial arrangement as on the chip. Reprinted with permission from [78], 
© 2003 American Chemical Society.
Cy: Cyanine; HSA: Human serum albumin; mAb: Monoclonal antibody; MIST: Multiple spotting technology.
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variations within the microarray. In addition, qualitative or semi-
quantitative measurements are sufficient for many applications
such as biomarker discovery and interaction screenings. The results
obtained from such measurements can then be used in a second
step for an in-depth investigation in a low-throughput fashion.

In addition, the development of new fluorescent dyes, such as
quantum dots, might enhance the multiplexing capacities of
microarrays in combination with suitable scanner systems [87].

Such advances will be especially important for abundance-
based approaches, in which the sample volumes cannot be
decreased due to the absolute limits of detection, and therefore,
multiplexing by compartmentation is limited. In function-
based applications, it is expected that the degree of multiplex-
ing will be achieved by the compartmentation approach, rather
than through a labeling approach, since the concentration of
the interaction partners are generally not the limiting factor.

Key issues

• Multiplexing is required to gain a more global view of complex biologic networks.

• Different multiplex approaches have been developed for abundance- as well as function-based protein microarray applications.

• The main principles to perform multiplexing in abundance-based applications are currently different compartmentation strategies 
as well as labeling strategies.

• For functional applications, multiple spotting technology (MIST) is a promising compartmentation technique that allows 
multiplexing at the sample level as well as at the capture molecule level.

• Bead-based systems are an alternative to microarrays for measuring low numbers of samples in a multiplexed fashion in solution.

• The provision of large sets of expression clones as well as of high specific antibodies or antibody mimics remains a prerequisite for 
the development of large protein microarrays in multiplexing applications.
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