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Abstract
Background: Up to now, microarray data are mostly assessed in context with only one or few
parameters characterizing the experimental conditions under study. More explicit experiment
annotations, however, are highly useful for interpreting microarray data, when available in a
statistically accessible format.

Results: We provide means to preprocess these additional data, and to extract relevant traits
corresponding to the transcription patterns under study. We found correspondence analysis
particularly well-suited for mapping such extracted traits. It visualizes associations both among and
between the traits, the hereby annotated experiments, and the genes, revealing how they are all
interrelated. Here, we apply our methods to the systematic interpretation of radioactive (single
channel) and two-channel data, stemming from model organisms such as yeast and drosophila up to
complex human cancer samples. Inclusion of technical parameters allows for identification of
artifacts and flaws in experimental design.

Conclusion: Biological and clinical traits can act as landmarks in transcription space, systematically
mapping the variance of large datasets from the predominant changes down toward intricate
details.

Background
Microarrays completed their first steps involving technical
development and extraction of candidate genes by com-
paring small sets of samples. With the availability of data
from public databases, e. g. GEO [1] and ArrayExpress [2],

establishment of standards (e. g. MIAME and MAGE, [3]),
and more and more hybridizations at hand, attention is
now turning to the interpretation of larger datasets span-
ning many experimental conditions. Various fields of
research nowadays have a considerable throughput of
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microarray experiments. In order to fully interpret those
datasets, it is necessary to properly annotate them in all
relevant aspects.

However, not only is a sufficient level of detail an issue,
but there are also matters of data format [4]. While free
text format grants some flexibility for storage, enabling to
store protocols from all over the world for example, it
complicates statistical access. Even sophisticated text min-
ing methodology does not match the human brain in lan-
guage interpretation. It often recovers only a small
fraction of the information represented in the text that
would be available to a human reader. In fact, it is still
common practice to read through texts to collect values
for variables to account for in subsequent statistical anal-
ysis. For large datasets, however, converting textual
descriptions into a computer-readable format by human
interaction is a tedious task. Alternatively, experiment
annotations can be aquired in computer-readable format
from the beginning, such that their entire information can
be directly subjected to automated analysis [5].

Automated analysis requires that instances of occurance
of any annotation are countable. In practice, for large
datasets the annotation values need to be identifyable by
a computer, i. e. completely specified by fixed terms, using
a controlled vocabulary.

In general, microarray data can be viewed as a "genes ×
experiments" data table. Additional information worthy
of being taken into account may be annotated both to the
rows or the columns of the table, i. e. the genes and exper-
iments. So far, microarray data annotation mostly means
gene annotation. Also, many published methods and soft-
ware tools are available for interpreting microarray data in
the light of gene information, ranging from genomic
localization [6,7] over transcription factor binding sites
[8] to pathway information [9] or entire GO annotation
[10-15], just to name few examples. Comparably little has
been done to apply protocol or sample information.

This may, at least in part, result from differences in data
structure. For gene annotation, many methods take
advantage of the straightforward structure of the Gene
Ontology (GO, [16,17]). Most terms apply to nearly all
organisms under investigation. In spite of ongoing
debates on semantics, the concept prooved successful for
data analysis.

On the experiment side, statistical access to such data
seems to be a more complex goal. Some parameters, such
as size or temperature, are not readily captured by terms
but show a continous value range.

Continous ranges need to be discretized (preferably as a
first step of the analysis process instead of already anno-
tating inalterable categories) before frequencies of, e. g.,
small, middle and large individuals can be counted. Fur-
ther, experiment annotations fundamentally differ from
organism to organism. Tumor type makes no sense for
yeast research and components of yeast media differ from
growth conditions of plants, complicating the develop-
ment of a common ontology.

To our knowledge, previous publications concerned with
statistical analysis of experiment annotations deal with
relatively small numbers of traits rather than comprehen-
sive experiment descriptions. Sese et al. account for only
16 annotation values [18]. Segal et al. extracted 263 values
from the literature (rather than from any ontology or
microarray database) [19]. These are mainly clinical, i. e.
sample-related, lacking information about the experimen-
tal protocols involved. Moreover, the clustering algo-
rithms of both publications do not reveal the spread of
arrays making up a clinical trait nor do they simultane-
ously visualize genes, arrays and traits.

In contrast to e. g. the Microarray Gene Expression Data
(MGED) Ontology [20], the lists of experiment annota-
tion parameters stored in M-CHiPS (Multi-Conditional
Hybridization Intensity Processing System, [21]) are tai-
lored to the specific needs of a particular field of research
[5]. Any source of controlled vocabulary may be used.
They currently comprise between 547 and 1011 defined
values, plus, between 38 and 161 annotations of continu-
ous value ranges, enabling an unprecedented level of
detail. Moreover, common to all fields of research, the
annotations cover technical parameters of array, RNA
preparation, labelling, hybridization, washing and signal
detection in order to pin down artifacts.

Not all of the annotated traits correspond to the signal
patterns observed in an experimental context under study
and it is not known in advance which of them do. We pro-
vide means to preprocess these annotations and extract
traits that correlate with transcription. Those are visual-
ized by correspondence analysis (CA) [22,23]. CA has
been shown to reveal intricate details not visible with hier-
archical clustering [23]. Like other projection methods, it
represents the columns of our "genes × experiments" data
table as vectors in a high-dimensional space spanned by
its rows (or vice versa). We will refer to this space as 'tran-
scription space'. Any possible status of the transcriptome
(e. g. of one of our samples) occupies a particular position
in it. For visual inspection, the data points are projected
onto a two-dimensional map that accounts for the main
variance in the data.
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Whereas both experiment annotations [5] and CA of
microarray data [22,23] have been reported earlier, the
two approaches remained unconnected yet. By represent-
ing the experiment annotations in transcription space, we
enable CA to account for associations both among and
between single genes, experiments and relevant experi-
ment annotations in a single plot. Moreover, each trait can
be judged according to the spread of hybridizations anno-
tated thereof. One can recognize it as being either locally
confined or spanning a wider area in transcription space
and genes can be identified as being associated to it. In
mapping the transcription space with well-known tags,
the experiment annotations allow for a "guided tour"
through the interpretable variance of the transcription
data. For systematic interpretation a top-down and a bot-
tom-up approach are presented. Moreover, we found
experiment annotations particularly valuable in detecting
artifacts as well as flaws in experimental design. To dem-
onstrate the general applicability of our methods, we
show data examples aquired with single and two-channel
platforms, stemming from yeast, fruit fly and human can-
cer.

Results
Each dataset was normalized and filtered (see Methods
and Additional file 1). It may be regarded as a table, each
row representing a gene (that meets the filter criteria),
each column standing for a transcription measurement. In
the following, we refer to any measured atomic set of val-
ues of a hybridization, e. g., the Cy5 channel for half of the
spots on an array with each gene spotted in duplicate, as
"measurement". An experimental condition is recorded
by multiple measurements, also involving repeated sam-
pling, labelling, and hybridization. Additional parameters
or variables provide further information about the meas-
urements. We will refer to these variables (or factors) as
"experiment annotations", to the values (levels) taken by
these as "annotation values". Figure 1 illustrates these
terms. In transcription space, each annotation value is
represented as the centroid (weighted average) of the
according experimental conditions.

Correspondence analysis
Basis for visualization is a data table, rows representing
the genes, columns the experimental conditions or anno-
tation values (each summarizing a set of conditions). The
information content of such a table can be judged by its
total inertia which is computed by deviding the χ2 statistic
of the table by its grand total. High associations between
rows and columns are reflected by a large inertias (as
opposed to homogenous table entries whose small differ-
ences could occur due to chance alone). In this sense, a
"differential" gene, i.e. a gene deviating from its "normal
expression", in a particular column, shows a large contri-
bution to the total inertia of the table. The larger the devi-

ation from its expected value, the farther the gene will be
located from the plot center. It will lie in the same direc-
tion as the associated column (condition or annotation
value) in case of positive association, or in the opposite
direction if it is particularly downregulated in this col-
umn. If several transcriptionally related conditions that
are also annotated by the same annotation value are com-
bined into one column representing this annotation
value, it will be located in the center of gravity of the com-
bined conditions, with all associated genes being located
in the same direction.

Transcription patterns integrated with clinical data 
(overview)
Before focusing on biologically relevant parameters, the
variance should be critically assessed for potentially con-
founding effects that may distort further analysis or that
may even abolish comparability of the data within larger
datasets. The supplementary material (Additional file 1)
provides two data examples demonstrating that experi-
ment annotations are capable of detecting analysis-inter-
fering artifacts and pitfalls in experimental design.

The following dataset assessing pancreas carcinoma along
with healthy tissue samples was selected to demonstrate
the methods' applicability for navigation through a large
number of biologically relevant parameters that correlate
with transcripton (Table 3 in the Additional file 1).

Investigating the data with no further hypothesis by
exploratory data analysis (data mining), it appears desira-
ble to visualize all parameters in a crude overview before
breaking down the interpretable variance into details
(top-down approach).

But not all annotation values should be taken at face
value. Some do not carry considerable amounts of infor-
mation in terms of transcription behaviour. We assess this
by computing their inertia contributions. The inertia,
computed as the χ2 statistic devided by the grand total of
the data table, is a means of assessing the variance or
information content of a data table. Here, each table col-
umn contains the (prototype) transcription profile of a
particular experiment annotation value, contributing a
certain share to the total inertia of the table. The discre-
tized annotation values are filtered according to the vari-
ance they contribute in the context of all values of all
annotations (Tab. 5 in Additional file 1).

However, this criterion alone is not sufficient for filtering
relevant experiment values. Each of the annotation values
is a centroid of all experimental conditions annotated by
this value. These conditions may cluster densely around
their centroid, well-separated from all other conditions, or
they may show inhomogenous transcription, overlapping
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with conditions annotated by another value. To assess if
an annotation value annotates a distinct cluster of condi-
tions or not, we compute the Silhouette value (SV, [24]).
Let there be an experimental annotation A taking values
i∈A. One SV per annotation value i and measurement j is
computed as sij = (bij - aij)/max(aij, bij), where aij is the aver-
age distance of annotated measurement j to all other
measurements annotated with i and bij is the minimum of
average distances of measurement j to all measurements
not annotated with i. Here, the Silhouette scores were
computed on the basis of the χ2 distances.

A SV close to one will result for measurements well-sepa-
rated from the measurements of neighboring clusters
(composed of measurements annotated with annotation
values other than i). A score around zero means that the
measurement could be assigned to another annotation
value, as well. A score close to minus one denotes that the

object is most likely misclassified, i. e. transcriptionally
affiliated to another but the annotated annotation value.
The average SV of all measurements annotated with a par-
ticular annotation value i is used as a second criterion for
filtering the annotation values (Tabs. 4 and 5 in the Addi-
tional file 1).

Among all 93 values taken by any annotation of the data
after discretization (Table 5 in the Additional file 1), Fig.
2 plots the 26 filtered out for showing inertia contribu-
tions above 1% and positive SV, i. e. considerable variance
of the values and clustering of measurements annotated
thereof. They are shown both by CA (Fig. 2a, variance
explained by the principal axes shown in Fig. 2)b as well
as by hierarchical clustering (Fig. 2)c.

Two transcriptionally relevant features A and B cluster
together, if A and B are similar in terms of transcription

Experiment annotations, annotation values, and measurementsFigure 1
Experiment annotations, annotation values, and measurements. A set of experiment annotations (left upper box) is 
assessed describing an experimental context, here a microarray study of pancreas cancer samples. Each experiment annotation 
(e. g. tumor type) can take several annotation values (right upper box). Each of these annotation values (e. g. serous cystade-
noma) annotates a set of microarray measurements. Each measurement is affiliated to exactly one annotation value per exper-
iment annotation. In this manner, each experiment annotation represents a possible grouping of the measurements, with each 
experiment annotation value representing a distinct group. If this grouping corresponds to the transcription patterns observed, 
the experiment annotation is relevant for the experimental context under study.
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behaviour of the samples having these traits. The sets of
measurements annotated by A and B may overlap by
many measurements showing both features. On the other
hand, although neighbouring in transcription space, they
may also be completely disjoint (leading to a differing
interpretation). Thus, apart from the similarity in tran-
scription, the overlap (percentage of intersecting measure-

ments) can be read out for neighbouring features in Fig.
2c.

Features annotating identical sets of measurements (e. g.
pN stage 1 and WHO stage III) and those discretized into
one category (e. g. normal tissues and IPMT) have been
combined into one. In Fig. 2c, the merging of many fea-

Overview of the pancreas cancer dataFigure 2
Overview of the pancreas cancer data. Human biopsies are characterized in terms of 26 (out of 93) experiment annota-
tion values that have been selected for reproducibly corresponding to major variances in transcription. These traits have been 
subdevided into four different clusters (red, blue, pink, and green) by cutting the hierarchical clustering tree (panel c) at less 
than 20% of their total variance. Thickness of lines in the clustering tree corresponds to numbers of hybridizations annotated 
with at least one of the traits of the according cluster. The thickness of the horizontal yellow lines corresponds to the number 
of measurements posessing the listed trait, or, in case of a feature-cluster, at least one of the comprised traits, but none of the 
traits of the cluster to merge with next. A grey line stands for the empty set, indicating that, in terms of annotated measure-
ments e. g. of the green cluster, this cluster is completely included in the cluster to merge with. The thickness of the vertical 
line indicates the cardinality of the intersection (number of measurements having at least one trait out of either cluster). 
Whereas the line thickness is proportional to the number of measurements relative to the total number of measurements in 
the dataset, the percentages written next to the vertical lines denote the cardinality of an intersection relative to the cardinality 
of the union of the particular two clusters to merge, only. The annotation values are also shown by CA (panel a), genes being 
plotted as grey dots, traits as boxes color-coded as above. The plot reveals that the difference between the first two and the 
second two clusters corresponds to many differential genes and makes up to 75% of the total variance among the traits (panel 
b).
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tures potentially yields longer rows. For the truncated
rows, the number in square brackets refers to the rank in
Table 5 of Additional file 1.

The hierarchical clustering has been performed by merg-
ing two clusters, if the variance-reduction introduced by
combining this particular pair is minimal among all pos-
sible pairs. The variance-reduction for each merge can be
read out from the scale at the bottom of Fig. 2c. Here, in
order to obtain a broad overview over the transcription
space, the hierarchical tree is cut arbitrarily at the level of
four resulting clusters (red vertical line), such that all but
one more general cluster comprise a characteristic tumor
type. The more general (blue) cluster would actually con-
tain the annotation value 'tumor type = pancreas serous
cystadenoma' (data not shown), which is an inhomoge-
nous class in terms of transcription profiles and was there-
fore filtered out for negative SV.

These clusters can be interpreted in terms of their anno-
tated features. Ordered by increasing malignancy, the first
cluster (red, "normal") comprises normal tissue as well as
intraductal papillary mucinous tumor (IPMT, in our case
all benign) samples. The second one (blue, "general" or
"serous") containing the serous and other tumor samples,
comprises more general features such as no pain, no
weight loss, and pT stage zero (no primary tumor identi-
fied, [25]) that apply to a wider area in transcription
space. The third cluster (pink, "mucinous") comprises the
mucinous tumor types along with present alcohol con-
sumption, diabetes, weight loss and moderate pain. The
only sample annotated with 'severe pain' was of uncertain
pathology. It is characteristic for pancreatic cancer, that
patients sense no greater pain before a late stage, in which,
due to metastazation, the cancer is inoperable in most
cases and is thus not among the biopsies studied here. The
most malignant type of pancreas cancer contained by the
data (green, "ductal") is characterized by short-term sur-
vival, pN stage 1, WHO stage III, metastases ('tumor site =
kidney'), pre- and post-operational chemotherapy, and,
interestingly, past alcohol consumption.

Fig. 2a shows a CA visualizing 87.2% (sum of first two
dimensions in Fig. 2b) of the total inertia of the filtered
annotation values. These are color-coded according to
above clusters. As in Fig. 2c, the variance among and
within the clusters is visualized. Also, CA (Fig. 2a) con-
firms that the predominant variance is between the two
malignant clusters (green and pink) on one side and the
two more benign ones (blue and red) on the other.
Extending what is visible from Fig. 2c, CA also shows the
genes responsible for this. It tends to display genes (grey
dots) associated to, i. e. upregulated under a particular
condition on a line from the plot center to this condition,
the stronger the association, the larger the distance to the

center. The majority of the differential genes (i. e. those
with greater distance to the plot center) correspond to this
difference. Their transcripts are most abundant either
both in the first two or both in the second two clusters. A
much lower number of genes discriminates between the
two malignant and/or between the two benign clusters.

In order to accurately afflilate associated genes to the
above clusters, the individual traits have been combined
to one representative transcription profile per cluster
(cluster-centroid). Fig. 3 shows a CA projecting the vari-
ance of the genes according to these cluster-centroids,
explaining 98.3% of the inter-cluster variance (upper right
corner). As already visible in Fig. 2c, the four clusters over-
lap to differing amounts in terms of the sets of annotated
measurements. Their individual ranges are scetched by cir-
cles comprising 80% of all measurements (grey squares)
annotated with at least one of the traits in the cluster. The
center of the circle is in the location of the transcription
profile most representative for the particular combination
of traits. The least malignant cluster 1 (red) including the
control tissues, for example, has the smallest range, repre-
senting by and large a subset of cluster 2 (blue) while not
intersecting with the cluster 4 (green) of high malignancy.

Many genes associated to cluster 1 (red) and 2 (blue) are
indicative of normal, differentiated and functional pan-
creatic tissue (PRSS2, PNLIP, MCL1, CPA1, PPY), encod-
ing for proteins required for food digestion. Exclusively
associated to cluster three (magenta, mucinous tumors)
are the connective tissue growth factor (CTGF) which will
be discussed in context of present alcohol consumption as
well as the glutathione peroxidase 3 (GPX3) which was
reported to be overexpressed in ovarian cancer [26]. On
the left, we find genes associated with both cluster 3 and
4 (FN1, Tie-1, Collagen, IFI27, NCA), indicating e. g. pro-
liferation of epithelial and interstitial connective tissue.
Further discussion and literature are provided in Addi-
tional file 1.

Exclusively associated to the fourth cluster (green, highest
malignancy) are genes applicable to discriminating the
highly agressive tumors from the mucinous, such as the
fibroblast growth factor 2 (FGF2, consistent with [27]),
the Clostridium perfringens enterotoxin receptor (CPE-R)
which was discussed in context of prostate cancer [28],
and Glutathione [29]. Also applicable to discriminating
the highly agressive tumors from the mucinous are mucin
1 (MUC1), which is in agreement with [30], as well as two
more genes described as follows. Increasing evidence has
accumulated in support of the hypothesis that growth
hormone (GH) and insulin-like growth factors (IGFs)
play a role in carcinogenesis. Insulin like growth factor
binding protein 3 (IGFBP3) is upregulated in pancreatic
endocrine tumors and its overexpression is significantly
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more common in metastatic disease [31]. High expression
of IGFBP3 has been associated with invasiveness and poor
prognosis in other cancer types [32]. GH receptor antago-
nist treatment decreased colon carcinoma growth in nude
mice, associated with reduction in circulating IGFBP3 lev-
els [33]. Elongation factor 1γ (EF1γ) is overexpressed in
esophageal cancer with severe lymph node metastasis and
far advanced stages of the disease compared with non-
overexpressing cases [34]. In summary, genes affiliated to
cluster four are known to be associated with metastasis,

advanced stage disease and poor prognosis of pancreatic
and other cancers.

After assessing the variance between the trait-clusters, one
can go into more detail by analyzing each cluster alone,
assessing the variance within. This strategy can be recur-
sively taken to increasingly smaller variances until inspect-
ing differences between single traits. Discussing the entire
variance of the pancreas dataset is beyond the scope of
this paper. Figs. 6 and 7 in the Additional file 1 show the

Trait-cluster rangesFigure 3
Trait-cluster ranges. The cluster centroids of the experiment annotation values of Fig. 2 have been projected by CA, the 
first two principal axes explaining almost the entire variance among these (upper right corner). Genes are depicted as grey 
dots, hybridization measurements (plotted without mass) as grey empty boxes, cluster centroids as filled boxes, color coded as 
in Fig. 2 Around each centroid, a circle incloses 80% of the measurements annotated with at least one of the traits belonging to 
the particular cluster. Lines to the cluster centroids in standard coordinates [23] indicate the direction of highest association 
with a certain cluster for the genes. Some of these are encirceled in black, tagged by a gene name and further referred to in the 
text.
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analysis of cluster four, focusing on the most malign sam-
ples.

Picking aspects of interest (details)
In a bottom-up (agglomerative) approach, the experiment
annotations may serve to first pick aspects of particular
interest, investigating the data aspect by aspect. In the
extreme, a single annotation or only a subset of its values
can be projected, before visualizing certain aspects
together to assess their interaction. Knowing from Tab. 3
(Additional file 1) which parameters correlate to tran-
scription, one can select one or several of special interest.
Fig. 4 projects the values taken by the annotation 'alcohol
consumption' (Tab. 4 in the Additional file 1). Its right
half ('healthy tissues') displays genes already discussed for
the overview such as PPY, PNLIP and PRSS2, which are
expressed by healthy pancreatic cells for food digestion
and which are downregulated upon alcohol consumption
(both past and present). On the opposite side along the
green line, genes are located which are upregulated with
both past and present alcohol consumption: Fibronectin
(FN1), and collagens Type I (COL1A2) and III (COL3A1)
have already been discussed above in context of the strong
desmoplastic reaction of pancreatic cancer. Matrix Metal-
loproteinase 2 (MMP2) has been found to be expressed in
pancreatic cancers and has been positively correlated with
metastasis [35,36]. Furthermore, MMP2 has been found
to be a diagnositc marker for pancreatic carcinoma in pan-
creatic juice [37]. In summary, the geneset negatively or
positively associated to alcohol consumption in general
characterizes healthy pancreatic tissue on one hand and
the dense connective tissue reaction of pancreatic cancer
involving fibronectin and collagens type I and III on the
other.

The difference between present and past alchohol con-
sumption is shown statistically significant and extensively
discussed in terms of associated genes in Additional file 1.
In summary, genes associated with past alcohol consump-
tion have been linked to physiological processes associ-
ated with increased risk for malignant transformation,
pancreatic cancer cell proliferation, survival, invasion,
metastasis, and impaired cell differentiation (K19, IFI27,
S100P, CXCR4). In contrast to past alcohol consumption,
present alcohol intake appears associated with the expres-
sion of immediate response genes to tissue damage, repair
and remodeling, inflammatory and stress response
(IFITM1, CRHBP, TIMP 2 and 3, DUSP1, CTGF).

Discussion
Whereas there is a wealth of methods published to ana-
lyze microarray data together with gene annotation, little
has been done to integrate experiment annotation related
to experimental protocols and sample description. Gen-
eral titles about ontology-driven analysis of microarray

data often obscure that a publication is concerned solely
with gene annotations. That does not mean that experi-
ment annotations are regarded dispensable or not being
worked on. There are projects under way to explicitly cap-
ture sample and experiment descriptions in unified ways.
Also, there are first attemtps to statistically analyze partic-
ular traits together with the transcription data. But the two
approaches have remained unconnected yet.

We use large hierarchically ordered lists of factors in a way
that renders all the data readily available for statistical
access. Rather than using only one framework for all fields
of microarray research, these lists satisfy the specific
requirements of each field, allowing for arbitrary levels of
detail. We take into account also technical parameters to
identify artifacts as well as flaws in experimental design. In
providing means to statistically analyze explicit experi-
ment descriptions covering all aspects that may be rele-
vant, our approach links between sophisticated and
holistic, yet complex, incomplete and therefore not read-
ily statistically accessible standardization on one hand,
and statistical analysis of few traits manually extracted
from the literature on the other.

When processing detailed experiment descriptions, not all
annotated traits correspond to transcription in a particular
experimental context. They need to be preprocessed and
filtered. Afterwards, it is advisable to first consider techni-
cal artifacts before proceeding to biological variations that
may well comprise smaller variance in some cases. After
dealing with the technical variance feeding into the design
of follow-up experiments, or simply resulting in the exclu-
sion of hybridizations from further analysis, biological
variabilities can be visualized. Apart from the advantages
listed in ref. [23], CA is particularly convenient for the
integration of characteristic traits common to more than
one experiment because it works on the χ2 distance. This
is the only one of its kind possessing a property called the
'principle of distributional equivalence' [38]: If column
profiles are identical or similar, the corresponding col-
umns can be merged by summation with no or little
change to the positions of the rows. In our context, this
guarantees the stability in distances between genes, when
similar experimental conditions are merged into a repre-
sentative trait common to all of them.

Thus visualized, experiment annotations can be
employed as landmarks in transcription space. They can
be used to map crude overviews down to intricate details
(which may need statistical validation), allowing for a sys-
tematic interpretation of the entire variance of large data-
sets (Fig. 5). There is no way of discussing the entire
interpretable variance of the pancreas data within this
paper. Both a top-down and a bottom-up approach are
sketched in example by their first step. Not all of the bio-
Page 8 of 14
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logical variance may be of interest to a researcher. In a bot-
tom-up (agglomerative) approach, the experiment
annotations may serve to first pick aspects of particular
interest, investigating the data aspect by aspect (Fig. 5b).
In extreme, a single annotation (Fig. 4) or only a subset of
its values can be projected, before adding more annota-
tions to study their interaction.

For explorative data analysis, however, it is more conven-
ient to plot an overall overview as a first step before devi-
sively splitting up the variance (Fig. 5a). Figure 2 shows all
traits meeting our filter-constraints, both projected by CA

(Fig. 2a) and hierarchically clustered (Fig. 2c). By means
of the latter, more general clusters can be identified. The
single traits, by meeting the filter-criteria, stem from
tightly clustered experimental conditions and correspond
to relatively small, well-defined areas in transcription
space. In contrast, the more general clusters show different
ranges in transcription space (Fig. 3).

Another consequence of reducing the accounted variance
to a small number of cluster-centroids is the enhanced
projection quality. The two dimensions shown in Fig. 2a
explain only 87% (Fig. 2b) of the variability among the

Alcohol consumptionFigure 4
Alcohol consumption. The annotation values of experiment annotation alcohol consumption' (solid boxes) have been pro-
jected by CA. Elements are drawn as in Fig. 3. Unlike in Fig. 3, measurements (empty boxes) are color-coded. Each measure-
ment corresponds to only one annotation value, because the map is limited to one experiment annotation. We reversed the 
direction of the abscissa to maintain the orientation of tumors versus healthy tissues of the previous figures. We changed the 
color-code, however, to acknoledge the fact that present alcohol consumption alone does not represent the entire pink trait 
cluster of Fig. 2, for example.
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Systematic interpretationFigure 5
Systematic interpretation. For systematic interpretation of large datasets, the comprised variance can be divisively split up 
in a "top-down" "by-trait" assessment shown in panel a: After regarding the variance between a small number of trait clusters 
(Figs. 2 and 3), the variance within each cluster is analyzed separately in the same way (Figs. 6 and 7 in the Additional file 1) until 
analyses consist of single traits. Thus, the top-down approach proceeds from the predominant variance to more subtle 
changes, answering the question which traits are different and which similar transcriptionally. In contrast, an agglomerative 
"bottom-up" approach will focus on few traits initially (panel b). These may stem from a single annotation (aspect, parameter) 
of special interest (e. g. alcohol consumption, Fig. 4). In further steps, the most interesting annotation (not necessarily repre-
senting large variance) is combined with other aspects to visualize their interaction.
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single traits. The same applies to the variability of the
genes in respect of these traits. In practice, that means that
many genes cannot be accurately characterized in two
dimensions (but stick out of the paper plane, mostly in
the third dimension which explains 8.6%, Fig. 2).

In general, n objects can be projected onto an n-1 dimen-
sional (hyper-) plane such that all their distances are pre-
served. As a consequence of reducing to three or four data
points in gene-dimensional space, the two-dimensional
CA plot perfectly or almost perfectly explains the com-
plete remaining variance (98.3% in Fig. 3), respectively.
Differential genes can be accurately affiliated to the fea-
ture clusters, reflecting the behaviour of genes in an 'aver-
age' measurement showing the traits of one of the four
clusters.

Thus, few large areas in transcription space are character-
ized in terms of associated experiment annotation values
as well as in terms of corresponding genes. The process
may be iterated, investigating any of these areas (i. e. fea-
ture clusters) alone and recursively taken to subtle tran-
scription patterns as a "guided tour" through the interpret
able variance.

Conclusion
Currently, data interpretation represents the main bottle-
neck in transcriptional profiling experiments on microar-
rays [39]. Experiment annotations provide a means to
systematically interpret microarray data. Represented as
prototype (i. e. typical) profiles in transcription space, the
experiment annotation traits function as tags for organiz-
ing an overwhelming amount of information for interpre-
tation, breaking it down into digestible pieces that can be
understood and catalogued. Yet more variables, such as
promotor sequences and protein levels could be inte-
grated by CA, either as done so far, i. e. by applicative
arrangement in a two-way table, or by multiple or joint
correspondence analysis.

Methods
Experimental methods and preprocessing of transcription 
data
Sampling, labeling by reverse transcription, and hybridi-
zation were performed as described [40-47]. Detailed
experiment annotations in statistically accessible format
(controlled vocabulary) can be obtained for the yeast data
from the Eurofan II, B2 web page [48] for all other data
from our web page [49]. Normalization of single-channel
data (involving radioactive label) was carried out accord-
ing to ref. [23]. The method is based on a log-linear nor-
malization described in ref. [50] performing better than or
equally to lowess normalization [51]. In contrast, for the
two-channel (fluorescent label) platform, involving a
control-channel refering to a reference condition hybrid-

ized on all chips, each non-control channel was normal-
ized with respect to the control-channel of the particular
hybridization [52].

We select genes showing significant absolute expression
level in at least one of the conditions under study, sub-
stantial change relative to the control condition in at least
one of the other conditions, and reliable reproducibility
in the separation from the control condition in at least
one of the other conditions [50]. Details can be obtained
from Additional file 1.

Correspondence analysis

We provide here a concise summary of the technique (see
refs. [53] and [38] for details). A projection method much
like principle components analysis (PCA, [54,55]), CA
takes as input a matrix of genes × experiments and aims at
projecting these data into a subspace of low dimensional-
ity, e. g. a plane. In contrast to PCA, CA embeds both rows
(genes) and columns (experiments) of the matrix in the
same space. Let I genes and J experiments form I × J matrix
N with elements nij. Let ni+ and n+j denote the sum of the

ith row and jth column, respectively. Let n++ be the grand

total of N. The mass of the jth column is defined as cj = n+j/

n++, the mass of the ith row is ri = ni+/n++. We compute the

correspondence matrix P with elements pij = nij/n++, and

matrix S with elements sij = (pij - ricj)/ . S is subjected

to singular value decomposition [56]. It is decomposed

into the product of three matrices: S = UΛVT. Λ is a diago-

nal matrix, its diagonal elements λk being the singular val-

ues of S. For the projection, coordinates of gene i are

computed as fik = λkuik/ , of hybridization j as gjk =

λkvjk/ , for k = 1,...,J. These coordinates are called prin-

cipal coordinates.

So called standard coordinates for the columns (experi-
mental conditions) of the data matrix can help to identify

associated genes. They are computed as vjk/ . In prac-

tice, plotting them would shrink all remaining points to a
tiny area. We therefore draw a line from the center of the
plot to each standard coordinate instead of plotting the
standard coordinates themselves. We depict the first two
dimenstions (k = 1, 2) of the projection space. The loss of
information associated with this dimension reduction can

be computed as fraction of the total inertia 

explained by k = 1, 2, i. e. . CA offers
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the opportunity to embed rows or columns "without
mass", i. e. without being taken into account for comput-
ing the projection space. Let the matrix N determine the

projection and let N* of elements , contain columns to

be plotted without mass. N is submitted to correspond-

ence analysis. Let P* have elements . The

principal coordinates for the supplementary columns
from correspondence matrix P* are then computed as

Representation of experiment annotation data in 
transcription space
For each experiment annotation, its values correspond to
disjoint sets of measurements. Fig. 4 shows an example.
All measurements sharing an annotation value are
depicted as empty boxes of the same colour. Measure-
ments have been repeatedly performed for each particular
experimental condition (in context of Fig. 4, that means
for a particular patient). Robust transcription profiles rep-
resenting the experimental condition can be obtained by
the gene-wise median of its measurements [23]. Here,
among all measurements annotated by a particular anno-
tation value, we compute the gene-wise median for those
belonging to the same condition. The data table for a par-
ticular annotation therefore contains one column for each
experimental condition that is uniformly annotated by
the particular annotation. Thus, the weight of a particular
annotation value corresponds more to the number of
hereby annotated conditions than to the number of
repeatedly performed hybridizations that may vary
among different conditions.

The χ2 distance possesses the property of distributional
equivalence [38]. For a CA in this context, that means that
table columns (experimental conditions) showing similar
transcription profiles can be merged into one representa-
tive profile without changing even the location of the
rows (genes), simply by row-wise adding the according
columns. Here we add up all the columns annotated by
the same annotation value to one representative transcrip-
tion profile. Thus, in transcription space, each annotation
value is represented as the centroid of the according exper-
imental conditions (filled boxes in Fig. 4).

In CA, we compute the principal axes according to the
annotation values, projecting the actual measurements
without mass. To further simplify interpretation, annota-
tion values showing similar representative transcription
profiles can be agglomeratively combined by hierarchical
clustering. In the approach described by ref. [57], two

clusters are combined, if the variance-reduction intro-
duced by combining this particular pair is minimal
among all pairs. Again, the combination is carried out by
adding the profiles.

Preprocessing of experiment annotations
Much like the transcription data, the experiment annota-
tions should not be taken at face value. Many of them may
not relate to transcription. Other annotations may corre-
late with the experimental processes under study but show
a continous value range that needs to be discretized into
meaningful groups of values. Discretization into mean-
ingful groups of values is by no means trivial. Depending
on the experimental context, different groupings of the
same value range may be most informative, which is the
reason for preprocessing the transcription data 'on the fly'
beforehand, instead of using predefined intervalls. Group
centers or borders of informative groupings may appear
equidistant in different scales (e. g. linear or log-trans-
formed) for different annotations or may be not regularly
spaced at all. From a biological point of view, it can even
occur that single ranges are not uniformly continuous. In
adaption processes, e. g. responses to transient environ-
mental changes or in cyclic processes such as the cell-
cycle, the transcriptome of cells tends to converge to the
initial point after a while such that the lowest and the
highest values of e. g. a time variable may well annotate a
common cluster of measurements with the middle range
corresponding to other transcription states.

Also, high numbers of values taken by nominal annota-
tions may raise the need to group values without any obvi-
ous measure of similarity. In other cases, the order of
enumeration type values is a matter of debate. Classifying
a parameter as nominal or ordinal already means to take
into account external biological knowledge about the
annotation to discretize. Human interaction is necessary.

In most cases, the biologist provides some good idea of
similarity among the values, e. g. of similarity among cer-
tain tumor types. In this case, the most informative group-
ing will maximize the correlation of similarity/
dissimilarity among these groups of annotation values on
one hand and the similarity/dissimilarity of the transcrip-
tion profiles of the corresponding measurements on the
other. By clustering the transcription profiles of the anno-
tation values by hierarchical clustering we let the biologist
decide about a suitable level for cutting the tree, taking
into account whatever order or similarity information
suitable for the individual parameter.

This is done separately for each annotation that takes
more values than suitable for simplicity and clarity of vis-
ualization, regardless of its range. Here, for each dataset,

nij′
*

p n nij ij′
∗

′
∗

++
∗= /

g
p

p f
j k

ij
i

ij ik

ki
′

∗

′
∗

′
∗

=
∑ ∑1

λ
.

Page 12 of 14
(page number not for citation purposes)



BMC Genomics 2006, 7:319 http://www.biomedcentral.com/1471-2164/7/319
all annotations taking more than four values were discre-
tized (see Additional file 1).

Afterwards, the discretized annotation values have been
ranked and/or filtered according to the variance they con-
tribute either in the context of the values of one annota-
tion or of all annotations (Table 4 or 5 in the Additional
file 1, respectively). The variance contributed by all values
of a particular annotation was added up to the variance of
the annotation in order to rank the annotations (Table 1
to 3 in the Additional file 1). Each of the annotation val-
ues is a centroid of all experimental conditions annotated
by this value. These conditions may cluster densely
around their centroid, well-separated from all other con-
ditions, or they may show inhomogenous transcription,
overlapping with conditions annotated by another value.
This can be assessed by the SV, which is high for the
former and low for the latter case. Computation of a SV
for a certain cluster of elements is based on the compari-
son of its tightness, and its separation from neighboring
clusters. We computed it on the basis of the χ2 distances
and used it as a second criterion for ranking and filtering.

Significance analysis of differences between two traits
Significance analysis of microarrays (SAM) has been per-
formed according to standard procedures (detailed in
Additional file 1) to assess the difference between neigh-
boring traits.
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