Cancer Chemoprevention by Targeting the Epigenome

Joseph Huang, Christoph Plass, Clarissa Gerhäuser*

Division Epigenomics and Cancer Risk Factors, German Cancer Research Center, Heidelberg, Germany

*Corresponding author:
Dr. Clarissa Gerhäuser, Division of Epigenomics and Cancer Risk Factors (C010), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
Tel. +49 6221 42 3306, Fax +49 6221 42 3359, Email: c.gerhauser@dkfz.de

Keywords: apoptosis, chemoprevention, chemopreventive agents, chromatin modifications, differentiation, DNA methylation, DNA methyltransferase (DNMT), epigenetic, epigenomic, histone acetyl transferase (HAT), histone acetylation, histone deacetylase (HDAC), histone methylation, hypermethylation, hypomethylation, polyphenols, sirtuins

Abstract
The term “epigenetics” refers to modifications in gene expression caused by heritable, but potentially reversible, changes in DNA methylation and chromatin structure. Given the fact that epigenetic modifications occur early in carcinogenesis and represent potentially initiating events in cancer development, they have been identified as promising new targets for prevention strategies. The present review will give a comprehensive overview of the current literature on chemopreventive agents and their influence on major epigenetic mechanisms, that is DNA methylation, histone acetylation and methylation, and microRNAs, both in vitro and in rodent and human studies, taking into consideration specific mechanisms of action, target sites, concentrations, methods used for analysis, and outcome. Chemopreventive agents with reported mechanisms targeting the epigenome include micronutrients (folate, selenium, retinoic acid, Vit. E), butyrate, polyphenols (from green tea, apples, coffee, and other dietary sources), genistein and soy isoflavones, parthenolide, curcumin, ellagittannin, indol-3-carbinol (I3C) and diindolylmethane (DIM), mahanine, nordihydroguaiaretic acid (NDGA), lycopene, sulfur-containing compounds from Allium and cruciferous vegetables (sulforaphane, phenylethyl isothiocyanate (PEITC), phenylhexyl isothiocyanate (PHI), diallyldisulfide (DADS), allyl mercaptan (AM)), antibiotics (mithramycin A, apicidin), pharmacological agents (celecoxib, DFMO, 5-aza-2'-deoxycytidine and zebularine), compounds affecting sirtuin activity (resveratrol, dihydrocoumarin, cambinol), inhibitors of histone acetyl transferases (anacardic acid, garcinol, ursodeoxycholic acid), and relatively unexplored modulators of histone lysine methylation (chaetocin, polyamine analogues, n-3 polyunsaturated fatty acids). Their effects on global DNA methylation, tumor suppressor genes silenced by promoter methylation, histone modifications, and miRNAs deregulated during carcinogenesis have potential impact on multiple mechanisms relevant for chemoprevention, including signal transduction mediated by nuclear receptors and transcription factors such as NF-κB, cell cycle progression, cellular differentiation, apoptosis induction, senescence and others. In vivo studies that demonstrate the functional relevance of epigenetic mechanisms for chemopreventive efficacy are still limited. Future research will need to identify best strategies for chemopreventive intervention, taking into account the importance of epigenetic mechanisms for gene regulation.
Outline

1. Epigenetic patterns in normal cells
2. Environmental influence on the epigenome
3. The cancer epigenome
 3.1 Global DNA hypomethylation patterns in human malignancies
 3.2 Cancer-related gene silencing by DNA hypermethylation
 3.3 Histone-based epigenetic modifications during carcinogenesis: Histone acetylation and methylation
 3.4 Impact of microRNAs on cancer development
4. Chemopreventive agents targeting the epigenome
 4.1 Development of a new paradigm
 4.2 Micronutrients and vitamins
 4.2.1 Folate
 4.2.2 Selenium compounds
 4.2.3 Retinoic acid (RA)
 4.2.4 Vitamin E (Vit. E)
 4.3 NaButyrate
 4.4 Polyphenolic compounds and other natural products
 4.4.1 (-)-Epigallocatechin gallate-3-gallate (EGCG), green tea polyphenols (GTP), and polyphenols from other dietary sources
 4.4.2 Genistein and soy isoflavones
 4.4.3 Parthenolide
 4.4.4 Curcumin
 4.4.5 Ellagitannin
 4.4.6 Indole-3-carbinol (I3C), Diindolylmethane (DIM)
 4.4.7 Mahanine and mahanine derivative
 4.4.8 Nordihydroguaiaretic acid (NDGA)
 4.4.9 Lycopene
 4.5 Sulfur-containing compounds
 4.5.1 Sulforaphane and PEITC
 4.5.2 Phenylhexyl isothiocyanate (PHI)
 4.5.3 Diallyl disulfide (DADS) and allyl mercaptan (AM)
 4.6 Antibiotics
 4.6.1 Mithramycin A (MMA)
 4.6.2 Apicidin
 4.7 Pharmacological agents
 4.7.1 Celecoxib and DFMO
 4.7.2 5-Aza-2'-deoxycytidine and zebularine
 4.8 Chemopreventive compounds affecting SIRT activity
 4.8.1 The complex role of SIRT1 in carcinogenesis
 4.8.2 Resveratrol – a SIRT1 activator
 4.8.3. Dihydrocoumarin and cambinol – SIRT inhibitors
 4.9 Modulators of HAT activity
 4.9.1 Anacardic acid
 4.9.2 Garcinol
 4.9.3 Ursodeoxycholic acid (UDCA)
 4.10 Modulators of histone lysine methylation
 4.10.1 Chaetocin
 4.10.2 Polyamine analogues-PG11144 and PG11150
 4.10.3 n-3 Polyunsaturated fatty acid (n-3 PUFAs)
5. Summary and outlook
Overview of epigenetic mechanisms targeted by chemopreventive agents, and their influence on pathways and mechanisms controlling tumor growth.

Abbreviations: AM, allyl-mercaptan; BMI-1, B-cell-specific Moloney murine leukemia virus integration site 1 (histone lysine methyltransferase); DADS, diallyldisulfide; DHC, dihydrocoumarin; DIM, diindolylmethane; EGCG, epigallocatechin gallate; EZH2, enhancer of zeste 2 (histone lysine methyltransferase); GTP, green tea polyphenols; HDAC, histone deacetylase (e.g. p300); KMSB, α-keto-γ-methylselenobutyrate; MSP, β-methylselenopropionate; NDGA, nordihydroguaiaretic acid; PEITC, phenethyl isothiocyanate; PHI, phenhexyl isothiocyanate; n-3 PUFA, n-3 polyunsaturated fatty acids; RA, retinoic acid; SITR1, Silent information regulator 1 (NAD+-dependent histone deacetylase); SFN, sulforaphane; SFRP, secreted frizzled-related protein; TSA, trichostatin A; UDCA, ursodeoxycholic acid; WIF, Wnt-inhibitory factor.