Cookie Settings

We use cookies to optimize our website. These include cookies that are necessary for the operation of the site, as well as those that are only used for anonymous statistic. You can decide for yourself which categories you want to allow. Further information can be found in our data privacy protection .

Essential

These cookies are necessary to run the core functionalities of this website and cannot be disabled.

Name Webedition CMS
Purpose This cookie is required by the CMS (Content Management System) Webedition for the system to function correctly. Typically, this cookie is deleted when the browser is closed.
Name econda
Purpose Session cookie emos_jcsid for the web analysis software econda. This runs in the “anonymized measurement” mode. There is no personal reference. As soon as the user leaves the site, tracking is ended and all data in the browser are automatically deleted.
Statistics

These cookies help us understand how visitors interact with our website by collecting and analyzing information anonymously. Depending on the tool, one or more cookies are set by the provider.

Name econda
Purpose Statistics
External media

Content from external media platforms is blocked by default. If cookies from external media are accepted, access to this content no longer requires manual consent.

Name YouTube
Purpose Show YouTube content
Name Twitter
Purpose activate Twitter Feeds

Not silent at all

No. 28c2 | 12/06/2019 | by Koh

The so-called "silent" or "synonymous" genetic alterations do not result in altered proteins. But they can nevertheless influence numerous functions of the cell and thus also disease processes. Scientists from the German Cancer Consortium, German Cancer Research Center, and the University of Freiburg have now created a comprehensive database of all synonymous mutations ever found in cancer. This is a "reference book" that provides cancer researchers with all available information on each of these supposedly "silent" mutations at a glance. Using the example of an important oncogene, the researchers show how synonymous mutations can influence the function of this cancer driver.

The mutation at position 30 of the KRAS oncogene leads to a completely altered secondary structure of the RNA.
© Diederichs/DKFZ

Cancer diseases are caused by changes in the genetic material. As a rule, genes that drive cancer growth (oncogenes) or counteract the development of cancer (tumor suppressor genes) are affected. In countless studies over the past decades, cancer researchers have analyzed which mutation plays which role in which type of cancer. However, they have largely focused on mutations that result in an altered amino acid sequence of proteins.

"A large proportion of the genetic alterations do not affect the amino acid sequence at all," explains Sven Diederichs, whose department is affiliated to the German Cancer Research Center (DKFZ), the University of Freiburg and the German Cancer Consortium (DKTK). This is because the genetic code for most amino acids has several "words" that differ in their last, third DNA building block. If a mutation affects this building block, nothing changes in the amino acid sequence and hence in the resulting protein. In the past, this was referred to as "silent" mutations, but now it is more likely to be "synonymous" mutations.

"Today we know that synonymous mutations play a role in many diseases and can, for example, affect the response of cancer to therapy. Nevertheless, their importance for the development of cancer is by no means as well understood as that of protein-changing mutations," said Diederichs. Synonymous mutations can intervene in many ways in important cellular processes: They affect the stability of RNA, its three-dimensional folded structure or how efficiently RNA is translated into proteins.

Diederichs and his colleagues from Heidelberg and Freiburg have now created an extensive database that contains all synonymous mutations discovered in the cancer genome and couples them with comprehensive additional information: What is the function of the affected gene, which position within the gene is mutated? In which cancers has the mutation been discovered so far and how often?

The SynMIC database contains a total of 659,194 entries concerning 88 different types of cancer. "Colleagues can use it as a reference book to obtain simple and comprehensive information about synonymous mutations that occur in the cancers they are dealing with," said Diederichs.

Using the important oncogene KRAS as an example, Diederichs and his team of researchers demonstrate in detail how synonymous mutations that have actually been discovered in cancer patients affect the RNA structure and protein production.

An estimated eight percent of all carcinogenic mutations affecting a single DNA building block are synonymous mutations. Previously, researchers had assumed that these supposedly "silent" mutations were not subject to selective pressure in cancer. But then they should be more or less randomly distributed over the genome - which is not the case, as the detailed decoding of cancer genomes in recent decades has shown.

Diederichs and colleagues now found another argument that strongly argues against the random hypothesis: Particularly at the beginning of all protein-coding gene segments, they mapped considerably fewer mutations - protein-changing as well as synonymous - than in the further course of the genes. "This is an indication that any mutation in this area has a stronger effect on the cell. Selective pressure could then prevent mutated cells from being able to assert themselves," said Diederichs. "And this selective pressure would then obviously also exist against synonymous mutations.

To the data base it goes under: http://synmicdb.dkfz.de/ 

Yogita Sharma, Milad Miladi, Sandeep Dukare, Karine Boulay, Maiwen Caudron-Herger, Matthias Groß, Rolf Backofen, Sven Diederichs: A pan-cancer analysis of synonymous mutations.
Nature Communications 2019, DOI: 10.1038/s41467-019-10489-2

 

With more than 3,000 employees, the German Cancer Research Center (Deutsches Krebsforschungszentrum, DKFZ) is Germany’s largest biomedical research institute. DKFZ scientists identify cancer risk factors, investigate how cancer progresses and develop new cancer prevention strategies. They are also developing new methods to diagnose tumors more precisely and treat cancer patients more successfully. The DKFZ's Cancer Information Service (KID) provides patients, interested citizens and experts with individual answers to questions relating to cancer.

To transfer promising approaches from cancer research to the clinic and thus improve the prognosis of cancer patients, the DKFZ cooperates with excellent research institutions and university hospitals throughout Germany:

  • National Center for Tumor Diseases (NCT, 6 sites)
  • German Cancer Consortium (DKTK, 8 sites)
  • Hopp Children's Cancer Center (KiTZ) Heidelberg
  • Helmholtz Institute for Translational Oncology (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ
  • DKFZ-Hector Cancer Institute at the University Medical Center Mannheim
  • National Cancer Prevention Center (jointly with German Cancer Aid)
The DKFZ is 90 percent financed by the Federal Ministry of Education and Research and 10 percent by the state of Baden-Württemberg. The DKFZ is a member of the Helmholtz Association of German Research Centers.

RSS-Feed

Subscribe to our RSS-Feed.

to top
powered by webEdition CMS