Beam Hardening and Scatter Removal with Empirical Cupping Correction for Primary Modulation (ECCP)

Rainer Grimmer1, Rebecca Fahrig2, Waldo Hinshaw2, Hewei Gao2, and Marc Kachelrieß1,3

1Friedrich-Alexander-University, Erlangen, Germany
2Stanford University, Palo Alto, USA.
3German Cancer Research Center (DKFZ), Heidelberg, Germany
Aim

- To reduce scatter using the technique of primary modulation
- To correct for beam hardening artifacts in case of spatially strongly varying x-ray spectra
The detected spectrum is a function of the line of integration L:

$$q(L) = -\ln \int dE \ w(L, E) \ e^{-\int dL \ \mu(r, E)}$$
Primary Modulation Scatter Estimation (PMSE)

Basic Idea

Key hypothesis: “Low-frequency components dominate the scatter distribution even if high-frequency components are present in the incident x-ray intensity distribution.”

The measurement with a modulator can expressed in Fourier space with:

\[P'(\omega) = \frac{1 + \alpha}{2} P(\omega) + \frac{1 - \alpha}{2} P(\omega - \pi) + S(\omega), \]

where \(P \) and \(S \) denote the Fourier transforms of primary and scatter, respectively, and \(\omega \in [-\pi, \pi] \times [-\pi, \pi] \) is the 2D coordinate of \((\omega_x, \omega_y)\) in the Fourier domain. Parameter \(\alpha \in (0, 1) \) is the transmission factor of the modulator blocker,

Scatter \(S \) can be estimated by

\[S_{est}(\omega) = P'(\omega)H(\omega) - \frac{1 + \alpha}{1 - \alpha} P'(\omega - \pi)H(\omega). \]

with \(H(\omega) \) being a low-pass filter.

Modulator

Photograph of the copper modulator

Projection image of the modulator

$M(u, v)$
Primary Modulator Introduces Beam Hardening

- The primary modulator introduces high frequency variations of the incident x-ray spectrum.
- These variations show up as ring artifacts in the reconstructed images\(^1,2,3\).

ECCP Calibration Procedure

• Beam hardening can be corrected as

\[p(\alpha, u, v) = \sum_{ij} c_{ij} M^i(u, v) q^j(\alpha, u, v) \]

• Let us define basis volumes as

\[f_{ij}(r) = R^{-1} M^i(u, v) q^j(\alpha, u, v) \]

such that

\[f(r) = \sum_{ij} c_{ij} f_{ij}(r) \]

• To determine \(c_{ij} \) minimize

\[\int d^3r \, w(r) \left(f(r) - t(r) \right)^2 \]

which is the weighted distance between the volume \(f(r) \) and a template volume \(t(r) \), that is a binary version of the uncorrected calibration phantom.
Central slices through nine different basis volumes

\[f_{ij} = R^{-1} M^i q^j \]
Materials

- Acquisition with a tabletop system
 - Water Phantom (calibration)
 - Catphan Phantom (slightly larger)
 - Thorax Phantom (significantly larger)
- Measurement with and without primary modulation (0.21 mm thick copper checkerboard pattern)
- Applying ECCP and PMSE
- Compare to a slit scan measurement
Results
Correction of the Catphan Phantom

Measurement without Modulator Measurement with Modulator ECCP–corrected

C = 0 HU, W = 500 HU
Results
Combined correction with PMSE and ECCP

Measurement without Modulator
PMSE+ECCP–corrected
Slitscan without modulator

C = 0 HU, W = 500 HU
Results

Combined correction with PMSE and ECCP
Results
Correction of the Thorax Phantom

Measurement without Modulator Measurement with Modulator ECCP–corrected

C = 0 HU, W = 1000 HU
Conclusions on ECCP

• ECCP is dedicated to rapidly varying spectra, e.g. as caused by
 – primary modulators
 – the heel effect
 – wedge filters
 – scratches in the filtration
 – varying sensitivity of the detector pixels
 – …..

• ECCP is an efficient and simple way to correct for first order beam hardening.

• ECCP can be combined with PMSE to nearly completely eliminate beam hardening and scatter artifacts.
Thank You!

This study was supported by the AiF under grant KF2336201FO9. Parts of the reconstruction software were provided by RayConStruct® GmbH, Nürnberg, Germany.