Topic I – DNA Vaccines

King CA, Spellerberg MB, Zhu D, Rice J, Sahota SS, Thompsett AR, Hamblin TJ, Radl J, Stevenson FK

DNA vaccines with single-chain Fv fused to fragment C of tetanus toxin induce protective immunity against lymphoma and myeloma.

Outline

• Introduction – Concepts and definitions
 ➢ Traditional vaccination
 ➢ DNA vaccines
 ➢ Definition of terms
 ➢ Tumor models

• Presentation of the paper
 ➢ Methods
 ➢ Results and figures

• Conclusions and discussion
Introduction – Traditional vaccination (1)

Purpose: - Induction of an immune response to achieve protection against an antigen to protect a future challenge or to initiate a reaction against already present antigens

Method: - Injection or oral uptake of antigen (e.g. protein, toxin, attenuated pathogen, etc.) together with adjuvant or carrier
Introduction – Traditional vaccination (2)

Applications:
- Protection against infectious diseases (e.g. Mumps, Influenza, Hepatitis, Flu, etc); increasingly used in cancer therapy

Limitations:
- Protein antigens may be difficult and expensive to produce
- No CTL response induced without cytosolic production of antigens (use of live attenuated viruses)
Introduction – DNA vaccines

Principle: - Injection of DNA, (e.g. in muscle tissue) leads to ectopic expression and presentation of the antigen

Advantages: - DNA vaccines are much easier to produce
- Access to multiple antigen-presentation pathways

Limitations: - Lower magnitude of response than with conventional antigens

→ idea of the paper:
find a strategy to overcome the problem of generally insufficient immune response
Introduction – Definitions

• Idiotype: unique features of the antigen-binding site

• sc-Fv: single-chain variable fragment
Introduction – Tumor models

• A31 cells: mouse B-cell splenic lymphoma expressing surface IgM/κ
• 5T33 cells: murine myeloma, expressing IgG_{2b}/κ in the cytoplasm
• BCL_{1} cells: B-cell lymphoma, expressing surface IgM/λ

all tumors are transplantable, i.e. disease can be transferred to healthy animals by intravenous injection of cells
Presentation of the paper – applied methods

- Preparation of idiotypic proteins
 - A31: IgMκ prepared from supernatant
 - 5T33: Intraperitoneal injection in mice, purification of IgG_{2b} from ascites fluid and preparation of Fabγ fragment by pepsin digestion

- Preparation of DNA vaccine constructs
 - V_H and V_L sequences obtained by PCR with primers mapping in the framework region 1 and in the J_H or C_k segment, respectively
 - Assembly of constructs into expression vectors and purification
Presentation of the paper – applied methods

- Vaccination and tumor challenge
 - Intramuscular injection of DNA vaccines (50μg) on days 0, 21 and 42
 - Subcutaneous injection of idiotypic protein with CFA on days 0, 21 and 28
 - Tumor challenge by intravenous injection of 1×10^4 A31 or 5T33 cells on day 63
Presentation of the paper – applied methods

• Measurement of antibody responses by sandwich ELISA and FACS
 - ELISA: Idiotypic A31 IgM and 5T33 Fab as capture antigens Detection with HRP-conjugated anti-mouse Fcγ or isotype specific anti-mouse IgG1 or IgG2b antibodies
 - FACS: Determination of antibody binding to A31, 5T33 or BCL1 cells with FITC-conjugated anti-mouse Fcγ antibody
Presentation of the paper – applied methods

• Cytotoxicity assay
 - CTLs taken from spleens of vaccinated mice on day 56
 - Activation either by incubation with FrC peptide-pulsed normal splenocytes for 7 days in the presence of human rIL-2 or with irradiated 5T33 cells
 - 51Cr-release assay by incubation with 51Cr-labelled EL-4 target cells (peptide-pulsed) or 5T33 cells (alone or peptide-pulsed)
Presentation of the paper – Results and figures

Fig. 1
Antibody responses against FrC or A31IgM induced by DNA vaccines

- Considerable immune response both to FrC and scFvA31 only upon injection of the fusion construct
- Boost on day 42 did not raise mean antibody levels, but greatly increased number of responding mice
Presentation of the paper – Results and figures

Fig. 2
Reactivity of antibodies induced by DNA fusion vaccines with target tumor cell lines

- Significant reactivity only with the surface-Ig positive A31 cell line
- No binding to 5T33 cells due to lack of surface Ig
Presentation of the paper – Results and figures

Fig. 3
Antibody responses against FrC or 5T33Fab induced by DNA vaccines

• Considerable immune response both to FrC and 5T33Fab in all animals after the first injection on day 0

• Clearly visible boost effect after third injection on day 42
Presentation of the paper – Results and figures

Fig. 4
Antibody responses against 5T33Fab induced by DNA vaccines requires gene fusion

- significant levels of anti-5T33Fab antibodies only upon expression of the p.scFv5T33-FrC fusion construct
- co-expression of single constructs is insufficient and only induces anti-FrC antibodies
Presentation of the paper – Results and figures

<table>
<thead>
<tr>
<th>Vaccine</th>
<th>Ab IgG subclass</th>
<th>Ratio IgG1: IgG2a</th>
</tr>
</thead>
<tbody>
<tr>
<td>p.scFvA31–FrC</td>
<td>A31IgM</td>
<td>18:1</td>
</tr>
<tr>
<td></td>
<td>FrC</td>
<td>0.4:1</td>
</tr>
<tr>
<td>A31IgM/CFA</td>
<td>A31IgM</td>
<td>137:1</td>
</tr>
<tr>
<td>p.scFv5T33–FrC</td>
<td>5T33Fab</td>
<td>28:1</td>
</tr>
<tr>
<td></td>
<td>FrC</td>
<td>22:1</td>
</tr>
<tr>
<td>5T33IgG/CFA</td>
<td>5T33Fab</td>
<td>∞</td>
</tr>
</tbody>
</table>

- Ig subclass profile of antibodies induced by DNA vaccines differs from protein antigen-induced subclass profile

- Dominance of IgG1, but induction of IgG2b antibodies through DNA vaccines indicates activation of a T_H1-cell response
Presentation of the paper – Results and figures

- Target cells coated with synthetic FrC peptide are efficiently lysed, indicating the induction of a potent CTL response against FrC.

- 5T33 cells alone are not killed, confirming that protective immunity is not mediated by CTLs (no candidate MHCI-binding peptide in scFv5T33 sequence).

Fig. 5
Induction of CTLs against FrC by the DNA fusion vaccine.
Presentation of the paper – Results and figures

Fig. 6
Induction of protective immunity against the A31 lymphoma by the DNA fusion vaccine

- Vaccination of mice with p.scFvA31-FrC DNA vaccine promotes survival upon induction of lymphoma by injection of A31 cells

- Non-vaccinated animals and animals vaccinated with p.scFvA31 or an unrelated DNA vaccine die rapidly
Presentation of the paper – Results and figures

Fig. 7
Induction of protective immunity against the 5T33 myeloma by the DNA fusion vaccine

- Vaccination of mice with p.scFv5T33-FrC DNA vaccine promotes survival upon induction of myeloma by injection of 5T33 cells

- Vaccination with 5T33 IgG protein induces high levels of anti-idiotypic antibody but does not protect against challenge
Presentation of the paper – Results and figures

Fig. 8
Effect of pre-vaccination with tetanus toxoid on induction of anti-Id antibodies by the p.scFv5T33-FrC construct.

• Pre-existing TT antibodies do not inhibit induction of anti-idiotypic antibodies

• Previous vaccination with any antigen delivered in alum even seems to boost the immune response
Conclusions and discussion

- scFv DNA vaccines are easier to generate and manipulate than the respective idiotypic proteins. Important: Idiotypes differ between individual patients. Vaccines must therefore be prepared specifically for each patients!

- when fused to a pathogen sequence such as the C fragment of tetanus toxin, they are able to induce high levels of anti-idiotypic antibody when injected into muscle

- vaccination with fusion constructs provides definite protection against tumor challenge in mice
 - antibody-mediated against A31 lymphoma
 - CD4\(^+\) T-cell mediated against 5T33 myeloma (?)
Conclusions and discussion

• Potential clinical application:
 - Vaccination during remission phase after conventional therapy to mobilize the immune system against residual disease → complete remission without eventual relapse

• Current status of preliminary clinical testing in 10 lymphoma patients:
 • Response to FrC in 8 of 10 patients
 • T cell responses to Id in 5 of 7 patients evaluated → all five patients remain in complete remission
 • No evident toxicity
 • Problem of evaluating significant responses objectively
Conclusions and discussion

Questions remaining to be addressed:

• Mechanism of protection against sId-negative myeloma:
 - helper T-cell-associated effector function?
 - cytokine release?

• Potential induction of tumor-specific CTLs through tumor challenge in vaccinated hosts?
 - tumor cells undergo vaccine-associated apoptosis
 → uptake of tumor cell 'corpses' by host APCs and cross-presentation of additional, Id-independent tumor-specific antigens
 → expansion of a clinically relevant CTL repertoire specific for tumor-associated antigens unrelated to Id and vaccination
References:

King CA, Spellerberg MB, Zhu D, Rice J, Sahota SS, Thompsett AR, Hamblin TJ, Radl J, Stevenson FK

Falo Jr. LD and Storkus WJ

Stevenson FK, Ottensmeier CH, Johnson P, Zhu D, Buchan SL, McCann KJ, Roddick JS, King AT, McNicholl F, Savelyeva N, Rice

Janeway et al., Immunobiology, 6th Ed.