Presse- und Öffentlichkeitsarbeit

Proteinpaar steuert Informationsfluss in die Schaltzentrale des Gedächtnisses

Neue Erkenntnisse über die Verknüpfung von Nervenzellen an der Schnittstelle zum Hippokampus

Nr. 36b | 24.07.2014

Neurowissenschaftlern aus Bonn und Heidelberg sind neue Einblicke in die Funktionsweise des Gehirns gelungen. An Gewebeproben von Mäusen konnten die Wissenschaftler des Deutschen Zentrums für Neurodegenerative Erkrankungen (DZNE) und des Deutschen Krebsforschungszentrums (DKFZ) nachvollziehen, wie zwei bestimmte Proteine auf die Schaltzentrale des Gedächtnisses einwirken. Die Moleküle mit der Bezeichnung „CKAMP44“ beziehungsweise „TARP Gamma-8“, die in ähnlicher Form auch beim Menschen vorkommen, wirken auf die Verknüpfung von Nervenzellen und beeinflussen die Übertragung von Nervensignalen in den Hippokampus. Diese Hirnregion ist an Lernprozessen und an der Entstehung von Erinnerungen maßgeblich beteiligt. Die Studienergebnisse sind im Fachjournal „Neuron“ veröffentlicht.

Körnerzellen sind über lange Fortsätze (Dendriten) mit anderen Zellen verbunden. Die eigentlichen Kontaktstellen (Synapsen) liegen auf dornartigen Ausstülpungen (im Englischen "Spines" genannt). Diese sind in der Computerdarstellung grün gefärbt.
© DZNE / Michaela Müller

Die Funktion des Gehirns beruht auf einem regen Austausch zwischen den Nervenzellen, den Neuronen. Dafür sind sie zu einem Geflecht verwoben, über das unablässig Signale wandern. Allerdings sind die Zellen nicht direkt miteinander verknüpft. In der Kontaktzone – der Synapse – sind sie jeweils durch einen hauchdünnen Spalt voneinander getrennt. Auf diesem Streckenabschnitt wirken „Neurotransmitter“, die das Nervensignal von einer Zelle zur nächsten übermitteln.

Docking-Stationen

Dabei kommen Rezeptoren ins Spiel. Diese Molekülkomplexe in der Hülle der Empfängerzelle sind Andockstellen für Botenstoffe, die die Senderzelle entlässt. Die Bindung des Botenstoffes an die Rezeptoren löst einen elektrischen Impuls aus – damit wird das Nervensignal an das nächste Neuron weitergegeben.

Für die aktuelle Studie nahm ein Team um Dr. Jakob von Engelhardt sogenannte AMPA-Rezeptoren in Augenschein. An diese bindet der Neurotransmitter „Glutamat“. Sie sind im Gehirn besonders häufig vertreten. In diesem Fall konzentrierten sich die Forscher jedoch gezielt auf eine bestimmte Region. „Wir haben uns AMPA-Rezeptoren in einem Bereich des Gehirns angeschaut, der den Haupteingang zum Hippokampus darstellt“, erläutert von Engelhardt, der für das DZNE und das DKFZ tätig ist. „Der Hippokampus ist das zentrale Hirnareal für Lernen und Gedächtnisbildung. Hier werden beispielsweise Sinneseindrücke verarbeitet und miteinander kombiniert. Deshalb haben wir uns gefragt, wie der Informationsfluss in den Hippokampus gesteuert wird.“

Helfendes Duo

Konkret widmeten sich die Forscher zwei Eiweißmolekülen: „CKAMP44“ und „TARP Gamma-8“. Sie kommen gemeinsam mit den AMPA-Rezeptoren in den sogenannten Körnerzellen vor – das sind jene Neuronen, über die der Hippokampus Signale empfängt. Bereits bekannt war, dass diese Proteine mit AMPA-Rezeptoren einen Proteinkomplex bilden. „Wir haben nun festgestellt, dass sie die Funktion der Glutamat-Rezeptoren maßgeblich beeinflussen. Jedes Protein auf seine eigene Art, denn chemisch sind sie komplett unterschiedlich“, so der Neurowissenschaftler. „Damit eine Nervenzelle Signale aufnehmen kann, kommt es also nicht allein auf die eigentlichen Rezeptoren an. CKAMP44 und TARP Gamma-8 sind genauso von Bedeutung. Ihre Funktion lässt sich von der Funktion der Rezeptoren gar nicht trennen.“

Das ergab die Untersuchung von Hirnproben, die die Forscher Mäusen entnommen hatten. Dabei verglichen sie Mäuse mit natürlichem Erbgut mit genetisch veränderten Tieren. Letzteren fehlte die Erbinformation für­ CKAMP44 und TARP Gamma-8 oder sie konnten nur eines dieser Eiweißmoleküle herstellen.

Dauerhafte Wirkung

Unter anderem stellten die Forscher fest, dass beide Proteine den Transport von Glutamat-Rezeptoren an die Zelloberfläche fördern. „Damit beeinflussen sie, wie empfänglich die Nervenzelle für eingehende Signale ist“, sagt von Engelhardt.

Entscheidend für die Signalaufnahme ist jedoch nicht nur, dass die Rezeptoren zur Zellmembran gelangen, sondern auch, wie lange sie dort verweilen. Denn die Zellmembran ist dynamisch: ständig werden Bausteine ein- und ausgebaut. Darauf haben die Hilfsmoleküle unterschiedliche Wirkung, stellten die Forscher fest: Damit die AMPA-Rezeptoren in der Zellhülle über längere Zeit verankert bleiben, ist TARP Gamma-8 notwendig. CKAMP44 hingegen spielt dafür keine Rolle. „Synapsen verändern ihre Kommunikation in Abhängigkeit davon, wie stark sie beansprucht werden. Diese aktivitätsabhängige Anpassung nennt man Plastizität. Die Veränderungen sind manchmal nur vorübergehend, manchmal von langer Dauer“, erläutert von Engelhardt. „TARP Gamma-8 beeinflusst die Langzeitplastizität. Es verleiht der Zelle die Fähigkeit, die synaptische Kommunikation über längere Zeit zu verstärken. Je mehr Rezeptoren auf der Empfängerseite der Synapse vorkommen, desto besser ist die neuronale Verbindung.“

Die Anzahl der Rezeptoren ändert sich nicht plötzlich, sondern bleibt über einen gewissen Zeitraum weitgehend stabil. „Hier geht es um einen Effekt, der Stunden, Tage oder noch länger andauern kann. Diese Langzeitwirkung ist eine Voraussetzung dafür, dass Erinnerungen entstehen können. Damit etwas im Gedächtnis bleibt, muss sich die Verbindung zwischen Nervenzellen dauerhaft verändern“, sagt der Wissenschaftler.

Neuronales Dauerfeuer

Wirkung zeigten CKAMP44 und TARP Gamma-8 aber auch auf kurzer Zeitskala. Das Forscherteam fand heraus, dass die Moleküle einen Effekt darauf haben, wie schnell die AMPA-Rezeptoren wieder empfangsbereit sind. „Hat Glutamat angedockt, dauert es einen gewissen Augenblick, bis der Rezeptor auf den nächsten Neurotransmitter reagieren kann. CKAMP44 verlängert diese Zeitspanne. Im Gegensatz dazu führt TARP Gamma-8 dazu, dass sich der Rezeptor schneller erholt“, so von Engelhardt.

Infolgedessen schwächt CKAMP44 die synaptische Verbindung vorübergehend ab, wohingegen TARP Gamma-8 die Kommunikation verstärkt. Durch das Zusammenspiel der Proteine kann eine Synapse ihre Empfindlichkeit auf ein bestimmtes Niveau einpegeln. Dieser Zustand kann Millisekunden bis zu einigen Sekunden andauern, bevor die Empfangsstärke erneut angepasst wird. Fachleute sprechen von „Kurzzeitplastizität“.

„Letztlich beeinflussen diese Moleküle, wie gut die Nervenzelle auf rasch aufeinanderfolgende Signale reagieren kann“, fasst der Wissenschaftler die Befunde zusammen. „Über derlei Dauerfeuer können Netzwerke von Neuronen ihre Aktivität aufeinander abstimmen. Das ist im Gehirn ein ganz normaler Vorgang.“

Empfindliches Gleichgewicht

Zur Überraschung der Forscher zeigte sich, dass die beiden Proteine neben den synaptischen Eigenschaften auch die Gestalt der Nervenzellen mitbestimmen: Fehlen die Helfermoleküle, so haben die Neuronen weniger Fortsätze, mit denen sie mit anderen Nervenzellen in Verbindung treten. „Der Organismus kann mittels CKAMP44 und TARP Gamma-8 neuronale Verbindungen auf mehrfache Weise regulieren“, erklärt von Engelhardt. „Dabei kommt es auf die Balance zwischen beiden Partnern an, da sie teils eine konträre Wirkung haben. Wie die Nervenzellen des Hippokampus auf Signale aus anderen Hirnregionen reagieren, hängt somit stark von dem Vorhandensein und Verhältnis dieser Moleküle ab.“

Da die beiden Moleküle so unmittelbar auf die Struktur und die Funktion der Synapsen der Körnerzellen einwirken, hält es Jakob von Engelhardt für durchaus wahrscheinlich, dass sie einen Einfluss auch auf das Lernen und das Gedächtnis haben.

Originalveröffentlichung
Co-expressed auxiliary subunits exhibit distinct modulatory profiles on AMPA receptor function, Konstantin Khodosevich, Eric Jacobi, Paul Farrow, Anton Schulmann, Alexandru Rusu, Ling Zhang, Rolf Sprengel, Hannah Monyer, Jakob von Engelhardt, Neuron, 2014, DOI: 10.1016/j.neuron.2014.07.004

Link zum Video-Abstract: http://youtu.be/YHT0a7DEuHs

Das Deutsche Krebsforschungszentrum (DKFZ) ist mit mehr als 3.000 Mitarbeiterinnen und Mitarbeitern die größte biomedizinische Forschungseinrichtung in Deutschland. Über 1000 Wissenschaftlerinnen und Wissenschaftler erforschen im DKFZ, wie Krebs entsteht, erfassen Krebsrisikofaktoren und suchen nach neuen Strategien, die verhindern, dass Menschen an Krebs erkranken. Sie entwickeln neue Methoden, mit denen Tumoren präziser diagnostiziert und Krebspatienten erfolgreicher behandelt werden können. Die Mitarbeiterinnen und Mitarbeiter des Krebsinformationsdienstes (KID) klären Betroffene, Angehörige und interessierte Bürger über die Volkskrankheit Krebs auf. Gemeinsam mit dem Universitätsklinikum Heidelberg hat das DKFZ das Nationale Centrum für Tumorerkrankungen (NCT) Heidelberg eingerichtet, in dem vielversprechende Ansätze aus der Krebsforschung in die Klinik übertragen werden. Im Deutschen Konsortium für Translationale Krebsforschung (DKTK), einem der sechs Deutschen Zentren für Gesundheitsforschung, unterhält das DKFZ Translationszentren an sieben universitären Partnerstandorten. Die Verbindung von exzellenter Hochschulmedizin mit der hochkarätigen Forschung eines Helmholtz-Zentrums ist ein wichtiger Beitrag, um die Chancen von Krebspatienten zu verbessern. Das DKFZ wird zu 90 Prozent vom Bundesministerium für Bildung und Forschung und zu 10 Prozent vom Land Baden-Württemberg finanziert und ist Mitglied in der Helmholtz-Gemeinschaft deutscher Forschungszentren.

Archiv Pressemitteilungen

Durchsuchen Sie unser Pressemitteilungsarchiv nach einem bestimmten Thema oder Jahr für Jahr.

RSS-Feed auf www.dkfz.de

Sie können unseren RSS-Feed ganz einfach abonnieren - unkompliziert und kostenlos.

RSS-Feed
nach oben